-
Notifications
You must be signed in to change notification settings - Fork 12.7k
/
mod.rs
911 lines (808 loc) · 32.3 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
use crate::build;
use crate::build::scope::DropKind;
use crate::hair::cx::Cx;
use crate::hair::{LintLevel, BindingMode, PatternKind};
use crate::transform::MirSource;
use crate::util as mir_util;
use rustc::hir;
use rustc::hir::Node;
use rustc::hir::def_id::DefId;
use rustc::middle::region;
use rustc::mir::*;
use rustc::ty::{self, Ty, TyCtxt};
use rustc::util::nodemap::HirIdMap;
use rustc_target::spec::PanicStrategy;
use rustc_data_structures::indexed_vec::{IndexVec, Idx};
use std::u32;
use rustc_target::spec::abi::Abi;
use syntax::attr::{self, UnwindAttr};
use syntax::symbol::kw;
use syntax_pos::Span;
use super::lints;
/// Construct the MIR for a given `DefId`.
pub fn mir_build(tcx: TyCtxt<'_>, def_id: DefId) -> Body<'_> {
let id = tcx.hir().as_local_hir_id(def_id).unwrap();
// Figure out what primary body this item has.
let (body_id, return_ty_span) = match tcx.hir().get(id) {
Node::Expr(hir::Expr { node: hir::ExprKind::Closure(_, decl, body_id, _, _), .. })
| Node::Item(hir::Item { node: hir::ItemKind::Fn(decl, _, _, body_id), .. })
| Node::ImplItem(
hir::ImplItem {
node: hir::ImplItemKind::Method(hir::MethodSig { decl, .. }, body_id),
..
}
)
| Node::TraitItem(
hir::TraitItem {
node: hir::TraitItemKind::Method(
hir::MethodSig { decl, .. },
hir::TraitMethod::Provided(body_id),
),
..
}
) => {
(*body_id, decl.output.span())
}
Node::Item(hir::Item { node: hir::ItemKind::Static(ty, _, body_id), .. })
| Node::Item(hir::Item { node: hir::ItemKind::Const(ty, body_id), .. })
| Node::ImplItem(hir::ImplItem { node: hir::ImplItemKind::Const(ty, body_id), .. })
| Node::TraitItem(
hir::TraitItem { node: hir::TraitItemKind::Const(ty, Some(body_id)), .. }
) => {
(*body_id, ty.span)
}
Node::AnonConst(hir::AnonConst { body, hir_id, .. }) => {
(*body, tcx.hir().span(*hir_id))
}
_ => span_bug!(tcx.hir().span(id), "can't build MIR for {:?}", def_id),
};
tcx.infer_ctxt().enter(|infcx| {
let cx = Cx::new(&infcx, id);
let body = if cx.tables().tainted_by_errors {
build::construct_error(cx, body_id)
} else if cx.body_owner_kind.is_fn_or_closure() {
// fetch the fully liberated fn signature (that is, all bound
// types/lifetimes replaced)
let fn_sig = cx.tables().liberated_fn_sigs()[id].clone();
let fn_def_id = tcx.hir().local_def_id(id);
let ty = tcx.type_of(fn_def_id);
let mut abi = fn_sig.abi;
let implicit_argument = match ty.sty {
ty::Closure(..) => {
// HACK(eddyb) Avoid having RustCall on closures,
// as it adds unnecessary (and wrong) auto-tupling.
abi = Abi::Rust;
Some(ArgInfo(liberated_closure_env_ty(tcx, id, body_id), None, None, None))
}
ty::Generator(..) => {
let gen_ty = tcx.body_tables(body_id).node_type(id);
Some(ArgInfo(gen_ty, None, None, None))
}
_ => None,
};
let safety = match fn_sig.unsafety {
hir::Unsafety::Normal => Safety::Safe,
hir::Unsafety::Unsafe => Safety::FnUnsafe,
};
let body = tcx.hir().body(body_id);
let explicit_arguments =
body.arguments
.iter()
.enumerate()
.map(|(index, arg)| {
let owner_id = tcx.hir().body_owner(body_id);
let opt_ty_info;
let self_arg;
if let Some(ref fn_decl) = tcx.hir().fn_decl_by_hir_id(owner_id) {
let ty_hir_id = fn_decl.inputs[index].hir_id;
let ty_span = tcx.hir().span(ty_hir_id);
opt_ty_info = Some(ty_span);
self_arg = if index == 0 && fn_decl.implicit_self.has_implicit_self() {
match fn_decl.implicit_self {
hir::ImplicitSelfKind::Imm => Some(ImplicitSelfKind::Imm),
hir::ImplicitSelfKind::Mut => Some(ImplicitSelfKind::Mut),
hir::ImplicitSelfKind::ImmRef => Some(ImplicitSelfKind::ImmRef),
hir::ImplicitSelfKind::MutRef => Some(ImplicitSelfKind::MutRef),
_ => None,
}
} else {
None
};
} else {
opt_ty_info = None;
self_arg = None;
}
ArgInfo(fn_sig.inputs()[index], opt_ty_info, Some(&*arg.pat), self_arg)
});
let arguments = implicit_argument.into_iter().chain(explicit_arguments);
let (yield_ty, return_ty) = if body.generator_kind.is_some() {
let gen_sig = match ty.sty {
ty::Generator(gen_def_id, gen_substs, ..) =>
gen_substs.sig(gen_def_id, tcx),
_ =>
span_bug!(tcx.hir().span(id),
"generator w/o generator type: {:?}", ty),
};
(Some(gen_sig.yield_ty), gen_sig.return_ty)
} else {
(None, fn_sig.output())
};
build::construct_fn(cx, id, arguments, safety, abi,
return_ty, yield_ty, return_ty_span, body)
} else {
// Get the revealed type of this const. This is *not* the adjusted
// type of its body, which may be a subtype of this type. For
// example:
//
// fn foo(_: &()) {}
// static X: fn(&'static ()) = foo;
//
// The adjusted type of the body of X is `for<'a> fn(&'a ())` which
// is not the same as the type of X. We need the type of the return
// place to be the type of the constant because NLL typeck will
// equate them.
let return_ty = cx.tables().node_type(id);
build::construct_const(cx, body_id, return_ty, return_ty_span)
};
mir_util::dump_mir(tcx, None, "mir_map", &0,
MirSource::item(def_id), &body, |_, _| Ok(()) );
lints::check(tcx, &body, def_id);
body
})
}
///////////////////////////////////////////////////////////////////////////
// BuildMir -- walks a crate, looking for fn items and methods to build MIR from
fn liberated_closure_env_ty(
tcx: TyCtxt<'_>,
closure_expr_id: hir::HirId,
body_id: hir::BodyId,
) -> Ty<'_> {
let closure_ty = tcx.body_tables(body_id).node_type(closure_expr_id);
let (closure_def_id, closure_substs) = match closure_ty.sty {
ty::Closure(closure_def_id, closure_substs) => (closure_def_id, closure_substs),
_ => bug!("closure expr does not have closure type: {:?}", closure_ty)
};
let closure_env_ty = tcx.closure_env_ty(closure_def_id, closure_substs).unwrap();
tcx.liberate_late_bound_regions(closure_def_id, &closure_env_ty)
}
#[derive(Debug, PartialEq, Eq)]
pub enum BlockFrame {
/// Evaluation is currently within a statement.
///
/// Examples include:
/// 1. `EXPR;`
/// 2. `let _ = EXPR;`
/// 3. `let x = EXPR;`
Statement {
/// If true, then statement discards result from evaluating
/// the expression (such as examples 1 and 2 above).
ignores_expr_result: bool
},
/// Evaluation is currently within the tail expression of a block.
///
/// Example: `{ STMT_1; STMT_2; EXPR }`
TailExpr {
/// If true, then the surrounding context of the block ignores
/// the result of evaluating the block's tail expression.
///
/// Example: `let _ = { STMT_1; EXPR };`
tail_result_is_ignored: bool
},
/// Generic mark meaning that the block occurred as a subexpression
/// where the result might be used.
///
/// Examples: `foo(EXPR)`, `match EXPR { ... }`
SubExpr,
}
impl BlockFrame {
fn is_tail_expr(&self) -> bool {
match *self {
BlockFrame::TailExpr { .. } => true,
BlockFrame::Statement { .. } |
BlockFrame::SubExpr => false,
}
}
fn is_statement(&self) -> bool {
match *self {
BlockFrame::Statement { .. } => true,
BlockFrame::TailExpr { .. } |
BlockFrame::SubExpr => false,
}
}
}
#[derive(Debug)]
struct BlockContext(Vec<BlockFrame>);
struct Builder<'a, 'tcx> {
hir: Cx<'a, 'tcx>,
cfg: CFG<'tcx>,
fn_span: Span,
arg_count: usize,
is_generator: bool,
/// The current set of scopes, updated as we traverse;
/// see the `scope` module for more details.
scopes: scope::Scopes<'tcx>,
/// The block-context: each time we build the code within an hair::Block,
/// we push a frame here tracking whether we are building a statement or
/// if we are pushing the tail expression of the block. This is used to
/// embed information in generated temps about whether they were created
/// for a block tail expression or not.
///
/// It would be great if we could fold this into `self.scopes`
/// somehow, but right now I think that is very tightly tied to
/// the code generation in ways that we cannot (or should not)
/// start just throwing new entries onto that vector in order to
/// distinguish the context of EXPR1 from the context of EXPR2 in
/// `{ STMTS; EXPR1 } + EXPR2`.
block_context: BlockContext,
/// The current unsafe block in scope, even if it is hidden by
/// a `PushUnsafeBlock`.
unpushed_unsafe: Safety,
/// The number of `push_unsafe_block` levels in scope.
push_unsafe_count: usize,
/// The vector of all scopes that we have created thus far;
/// we track this for debuginfo later.
source_scopes: IndexVec<SourceScope, SourceScopeData>,
source_scope_local_data: IndexVec<SourceScope, SourceScopeLocalData>,
source_scope: SourceScope,
/// The guard-context: each time we build the guard expression for
/// a match arm, we push onto this stack, and then pop when we
/// finish building it.
guard_context: Vec<GuardFrame>,
/// Maps `HirId`s of variable bindings to the `Local`s created for them.
/// (A match binding can have two locals; the 2nd is for the arm's guard.)
var_indices: HirIdMap<LocalsForNode>,
local_decls: IndexVec<Local, LocalDecl<'tcx>>,
canonical_user_type_annotations: ty::CanonicalUserTypeAnnotations<'tcx>,
__upvar_debuginfo_codegen_only_do_not_use: Vec<UpvarDebuginfo>,
upvar_mutbls: Vec<Mutability>,
unit_temp: Option<Place<'tcx>>,
/// Cached block with the `RESUME` terminator; this is created
/// when first set of cleanups are built.
cached_resume_block: Option<BasicBlock>,
/// Cached block with the `RETURN` terminator.
cached_return_block: Option<BasicBlock>,
/// Cached block with the `UNREACHABLE` terminator.
cached_unreachable_block: Option<BasicBlock>,
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
fn is_bound_var_in_guard(&self, id: hir::HirId) -> bool {
self.guard_context.iter().any(|frame| frame.locals.iter().any(|local| local.id == id))
}
fn var_local_id(&self, id: hir::HirId, for_guard: ForGuard) -> Local {
self.var_indices[&id].local_id(for_guard)
}
}
impl BlockContext {
fn new() -> Self { BlockContext(vec![]) }
fn push(&mut self, bf: BlockFrame) { self.0.push(bf); }
fn pop(&mut self) -> Option<BlockFrame> { self.0.pop() }
/// Traverses the frames on the `BlockContext`, searching for either
/// the first block-tail expression frame with no intervening
/// statement frame.
///
/// Notably, this skips over `SubExpr` frames; this method is
/// meant to be used in the context of understanding the
/// relationship of a temp (created within some complicated
/// expression) with its containing expression, and whether the
/// value of that *containing expression* (not the temp!) is
/// ignored.
fn currently_in_block_tail(&self) -> Option<BlockTailInfo> {
for bf in self.0.iter().rev() {
match bf {
BlockFrame::SubExpr => continue,
BlockFrame::Statement { .. } => break,
&BlockFrame::TailExpr { tail_result_is_ignored } =>
return Some(BlockTailInfo { tail_result_is_ignored })
}
}
return None;
}
/// Looks at the topmost frame on the BlockContext and reports
/// whether its one that would discard a block tail result.
///
/// Unlike `currently_within_ignored_tail_expression`, this does
/// *not* skip over `SubExpr` frames: here, we want to know
/// whether the block result itself is discarded.
fn currently_ignores_tail_results(&self) -> bool {
match self.0.last() {
// no context: conservatively assume result is read
None => false,
// sub-expression: block result feeds into some computation
Some(BlockFrame::SubExpr) => false,
// otherwise: use accumulated is_ignored state.
Some(BlockFrame::TailExpr { tail_result_is_ignored: ignored }) |
Some(BlockFrame::Statement { ignores_expr_result: ignored }) => *ignored,
}
}
}
#[derive(Debug)]
enum LocalsForNode {
/// In the usual case, a `HirId` for an identifier maps to at most
/// one `Local` declaration.
One(Local),
/// The exceptional case is identifiers in a match arm's pattern
/// that are referenced in a guard of that match arm. For these,
/// we have `2` Locals.
///
/// * `for_arm_body` is the Local used in the arm body (which is
/// just like the `One` case above),
///
/// * `ref_for_guard` is the Local used in the arm's guard (which
/// is a reference to a temp that is an alias of
/// `for_arm_body`).
ForGuard { ref_for_guard: Local, for_arm_body: Local },
}
#[derive(Debug)]
struct GuardFrameLocal {
id: hir::HirId,
}
impl GuardFrameLocal {
fn new(id: hir::HirId, _binding_mode: BindingMode) -> Self {
GuardFrameLocal {
id: id,
}
}
}
#[derive(Debug)]
struct GuardFrame {
/// These are the id's of names that are bound by patterns of the
/// arm of *this* guard.
///
/// (Frames higher up the stack will have the id's bound in arms
/// further out, such as in a case like:
///
/// match E1 {
/// P1(id1) if (... (match E2 { P2(id2) if ... => B2 })) => B1,
/// }
///
/// here, when building for FIXME.
locals: Vec<GuardFrameLocal>,
}
/// `ForGuard` indicates whether we are talking about:
/// 1. The variable for use outside of guard expressions, or
/// 2. The temp that holds reference to (1.), which is actually what the
/// guard expressions see.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum ForGuard {
RefWithinGuard,
OutsideGuard,
}
impl LocalsForNode {
fn local_id(&self, for_guard: ForGuard) -> Local {
match (self, for_guard) {
(&LocalsForNode::One(local_id), ForGuard::OutsideGuard) |
(&LocalsForNode::ForGuard { ref_for_guard: local_id, .. }, ForGuard::RefWithinGuard) |
(&LocalsForNode::ForGuard { for_arm_body: local_id, .. }, ForGuard::OutsideGuard) =>
local_id,
(&LocalsForNode::One(_), ForGuard::RefWithinGuard) =>
bug!("anything with one local should never be within a guard."),
}
}
}
struct CFG<'tcx> {
basic_blocks: IndexVec<BasicBlock, BasicBlockData<'tcx>>,
}
newtype_index! {
pub struct ScopeId { .. }
}
///////////////////////////////////////////////////////////////////////////
/// The `BlockAnd` "monad" packages up the new basic block along with a
/// produced value (sometimes just unit, of course). The `unpack!`
/// macro (and methods below) makes working with `BlockAnd` much more
/// convenient.
#[must_use = "if you don't use one of these results, you're leaving a dangling edge"]
struct BlockAnd<T>(BasicBlock, T);
trait BlockAndExtension {
fn and<T>(self, v: T) -> BlockAnd<T>;
fn unit(self) -> BlockAnd<()>;
}
impl BlockAndExtension for BasicBlock {
fn and<T>(self, v: T) -> BlockAnd<T> {
BlockAnd(self, v)
}
fn unit(self) -> BlockAnd<()> {
BlockAnd(self, ())
}
}
/// Update a block pointer and return the value.
/// Use it like `let x = unpack!(block = self.foo(block, foo))`.
macro_rules! unpack {
($x:ident = $c:expr) => {
{
let BlockAnd(b, v) = $c;
$x = b;
v
}
};
($c:expr) => {
{
let BlockAnd(b, ()) = $c;
b
}
};
}
fn should_abort_on_panic(tcx: TyCtxt<'_>, fn_def_id: DefId, abi: Abi) -> bool {
// Not callable from C, so we can safely unwind through these
if abi == Abi::Rust || abi == Abi::RustCall { return false; }
// Validate `#[unwind]` syntax regardless of platform-specific panic strategy
let attrs = &tcx.get_attrs(fn_def_id);
let unwind_attr = attr::find_unwind_attr(Some(tcx.sess.diagnostic()), attrs);
// We never unwind, so it's not relevant to stop an unwind
if tcx.sess.panic_strategy() != PanicStrategy::Unwind { return false; }
// We cannot add landing pads, so don't add one
if tcx.sess.no_landing_pads() { return false; }
// This is a special case: some functions have a C abi but are meant to
// unwind anyway. Don't stop them.
match unwind_attr {
None => true,
Some(UnwindAttr::Allowed) => false,
Some(UnwindAttr::Aborts) => true,
}
}
///////////////////////////////////////////////////////////////////////////
/// the main entry point for building MIR for a function
struct ArgInfo<'tcx>(Ty<'tcx>, Option<Span>, Option<&'tcx hir::Pat>, Option<ImplicitSelfKind>);
fn construct_fn<'a, 'tcx, A>(
hir: Cx<'a, 'tcx>,
fn_id: hir::HirId,
arguments: A,
safety: Safety,
abi: Abi,
return_ty: Ty<'tcx>,
yield_ty: Option<Ty<'tcx>>,
return_ty_span: Span,
body: &'tcx hir::Body,
) -> Body<'tcx>
where
A: Iterator<Item=ArgInfo<'tcx>>
{
let arguments: Vec<_> = arguments.collect();
let tcx = hir.tcx();
let tcx_hir = tcx.hir();
let span = tcx_hir.span(fn_id);
let hir_tables = hir.tables();
let fn_def_id = tcx_hir.local_def_id(fn_id);
// Gather the upvars of a closure, if any.
let mut upvar_mutbls = vec![];
// In analyze_closure() in upvar.rs we gathered a list of upvars used by a
// closure and we stored in a map called upvar_list in TypeckTables indexed
// with the closure's DefId. Here, we run through that vec of UpvarIds for
// the given closure and use the necessary information to create UpvarDecl.
let upvar_debuginfo: Vec<_> = hir_tables
.upvar_list
.get(&fn_def_id)
.into_iter()
.flatten()
.map(|(&var_hir_id, &upvar_id)| {
let capture = hir_tables.upvar_capture(upvar_id);
let by_ref = match capture {
ty::UpvarCapture::ByValue => false,
ty::UpvarCapture::ByRef(..) => true,
};
let mut debuginfo = UpvarDebuginfo {
debug_name: kw::Invalid,
by_ref,
};
let mut mutability = Mutability::Not;
if let Some(Node::Binding(pat)) = tcx_hir.find(var_hir_id) {
if let hir::PatKind::Binding(_, _, ident, _) = pat.node {
debuginfo.debug_name = ident.name;
if let Some(&bm) = hir.tables.pat_binding_modes().get(pat.hir_id) {
if bm == ty::BindByValue(hir::MutMutable) {
mutability = Mutability::Mut;
} else {
mutability = Mutability::Not;
}
} else {
tcx.sess.delay_span_bug(pat.span, "missing binding mode");
}
}
}
upvar_mutbls.push(mutability);
debuginfo
})
.collect();
let mut builder = Builder::new(hir,
span,
arguments.len(),
safety,
return_ty,
return_ty_span,
upvar_debuginfo,
upvar_mutbls,
body.generator_kind.is_some());
let call_site_scope = region::Scope {
id: body.value.hir_id.local_id,
data: region::ScopeData::CallSite
};
let arg_scope = region::Scope {
id: body.value.hir_id.local_id,
data: region::ScopeData::Arguments
};
let mut block = START_BLOCK;
let source_info = builder.source_info(span);
let call_site_s = (call_site_scope, source_info);
unpack!(block = builder.in_scope(call_site_s, LintLevel::Inherited, |builder| {
if should_abort_on_panic(tcx, fn_def_id, abi) {
builder.schedule_abort();
}
let arg_scope_s = (arg_scope, source_info);
// `return_block` is called when we evaluate a `return` expression, so
// we just use `START_BLOCK` here.
unpack!(block = builder.in_breakable_scope(
None,
START_BLOCK,
Place::RETURN_PLACE,
|builder| {
builder.in_scope(arg_scope_s, LintLevel::Inherited, |builder| {
builder.args_and_body(block, &arguments, arg_scope, &body.value)
})
},
));
// Attribute epilogue to function's closing brace
let fn_end = span.shrink_to_hi();
let source_info = builder.source_info(fn_end);
let return_block = builder.return_block();
builder.cfg.terminate(block, source_info,
TerminatorKind::Goto { target: return_block });
builder.cfg.terminate(return_block, source_info,
TerminatorKind::Return);
// Attribute any unreachable codepaths to the function's closing brace
if let Some(unreachable_block) = builder.cached_unreachable_block {
builder.cfg.terminate(unreachable_block, source_info,
TerminatorKind::Unreachable);
}
return_block.unit()
}));
assert_eq!(block, builder.return_block());
let mut spread_arg = None;
if abi == Abi::RustCall {
// RustCall pseudo-ABI untuples the last argument.
spread_arg = Some(Local::new(arguments.len()));
}
info!("fn_id {:?} has attrs {:?}", fn_def_id,
tcx.get_attrs(fn_def_id));
let mut body = builder.finish(yield_ty);
body.spread_arg = spread_arg;
body
}
fn construct_const<'a, 'tcx>(
hir: Cx<'a, 'tcx>,
body_id: hir::BodyId,
const_ty: Ty<'tcx>,
const_ty_span: Span,
) -> Body<'tcx> {
let tcx = hir.tcx();
let owner_id = tcx.hir().body_owner(body_id);
let span = tcx.hir().span(owner_id);
let mut builder = Builder::new(
hir,
span,
0,
Safety::Safe,
const_ty,
const_ty_span,
vec![],
vec![],
false,
);
let mut block = START_BLOCK;
let ast_expr = &tcx.hir().body(body_id).value;
let expr = builder.hir.mirror(ast_expr);
unpack!(block = builder.into_expr(&Place::RETURN_PLACE, block, expr));
let source_info = builder.source_info(span);
builder.cfg.terminate(block, source_info, TerminatorKind::Return);
// Constants can't `return` so a return block should not be created.
assert_eq!(builder.cached_return_block, None);
// Constants may be match expressions in which case an unreachable block may
// be created, so terminate it properly.
if let Some(unreachable_block) = builder.cached_unreachable_block {
builder.cfg.terminate(unreachable_block, source_info,
TerminatorKind::Unreachable);
}
builder.finish(None)
}
fn construct_error<'a, 'tcx>(
hir: Cx<'a, 'tcx>,
body_id: hir::BodyId
) -> Body<'tcx> {
let owner_id = hir.tcx().hir().body_owner(body_id);
let span = hir.tcx().hir().span(owner_id);
let ty = hir.tcx().types.err;
let mut builder = Builder::new(hir, span, 0, Safety::Safe, ty, span, vec![], vec![], false);
let source_info = builder.source_info(span);
builder.cfg.terminate(START_BLOCK, source_info, TerminatorKind::Unreachable);
builder.finish(None)
}
impl<'a, 'tcx> Builder<'a, 'tcx> {
fn new(hir: Cx<'a, 'tcx>,
span: Span,
arg_count: usize,
safety: Safety,
return_ty: Ty<'tcx>,
return_span: Span,
__upvar_debuginfo_codegen_only_do_not_use: Vec<UpvarDebuginfo>,
upvar_mutbls: Vec<Mutability>,
is_generator: bool)
-> Builder<'a, 'tcx> {
let lint_level = LintLevel::Explicit(hir.root_lint_level);
let mut builder = Builder {
hir,
cfg: CFG { basic_blocks: IndexVec::new() },
fn_span: span,
arg_count,
is_generator,
scopes: Default::default(),
block_context: BlockContext::new(),
source_scopes: IndexVec::new(),
source_scope: OUTERMOST_SOURCE_SCOPE,
source_scope_local_data: IndexVec::new(),
guard_context: vec![],
push_unsafe_count: 0,
unpushed_unsafe: safety,
local_decls: IndexVec::from_elem_n(
LocalDecl::new_return_place(return_ty, return_span),
1,
),
canonical_user_type_annotations: IndexVec::new(),
__upvar_debuginfo_codegen_only_do_not_use,
upvar_mutbls,
var_indices: Default::default(),
unit_temp: None,
cached_resume_block: None,
cached_return_block: None,
cached_unreachable_block: None,
};
assert_eq!(builder.cfg.start_new_block(), START_BLOCK);
assert_eq!(
builder.new_source_scope(span, lint_level, Some(safety)),
OUTERMOST_SOURCE_SCOPE);
builder.source_scopes[OUTERMOST_SOURCE_SCOPE].parent_scope = None;
builder
}
fn finish(self,
yield_ty: Option<Ty<'tcx>>)
-> Body<'tcx> {
for (index, block) in self.cfg.basic_blocks.iter().enumerate() {
if block.terminator.is_none() {
span_bug!(self.fn_span, "no terminator on block {:?}", index);
}
}
Body::new(
self.cfg.basic_blocks,
self.source_scopes,
ClearCrossCrate::Set(self.source_scope_local_data),
IndexVec::new(),
yield_ty,
self.local_decls,
self.canonical_user_type_annotations,
self.arg_count,
self.__upvar_debuginfo_codegen_only_do_not_use,
self.fn_span,
self.hir.control_flow_destroyed(),
)
}
fn args_and_body(&mut self,
mut block: BasicBlock,
arguments: &[ArgInfo<'tcx>],
argument_scope: region::Scope,
ast_body: &'tcx hir::Expr)
-> BlockAnd<()>
{
// Allocate locals for the function arguments
for &ArgInfo(ty, _, pattern, _) in arguments.iter() {
// If this is a simple binding pattern, give the local a name for
// debuginfo and so that error reporting knows that this is a user
// variable. For any other pattern the pattern introduces new
// variables which will be named instead.
let (name, span) = if let Some(pat) = pattern {
(pat.simple_ident().map(|ident| ident.name), pat.span)
} else {
(None, self.fn_span)
};
let source_info = SourceInfo { scope: OUTERMOST_SOURCE_SCOPE, span, };
self.local_decls.push(LocalDecl {
mutability: Mutability::Mut,
ty,
user_ty: UserTypeProjections::none(),
source_info,
visibility_scope: source_info.scope,
name,
internal: false,
is_user_variable: None,
is_block_tail: None,
});
}
let mut scope = None;
// Bind the argument patterns
for (index, arg_info) in arguments.iter().enumerate() {
// Function arguments always get the first Local indices after the return place
let local = Local::new(index + 1);
let place = Place::from(local);
let &ArgInfo(ty, opt_ty_info, pattern, ref self_binding) = arg_info;
// Make sure we drop (parts of) the argument even when not matched on.
self.schedule_drop(
pattern.as_ref().map_or(ast_body.span, |pat| pat.span),
argument_scope, local, ty, DropKind::Value,
);
if let Some(pattern) = pattern {
let pattern = self.hir.pattern_from_hir(pattern);
let span = pattern.span;
match *pattern.kind {
// Don't introduce extra copies for simple bindings
PatternKind::Binding {
mutability,
var,
mode: BindingMode::ByValue,
subpattern: None,
..
} => {
self.local_decls[local].mutability = mutability;
self.local_decls[local].is_user_variable =
if let Some(kind) = self_binding {
Some(ClearCrossCrate::Set(BindingForm::ImplicitSelf(*kind)))
} else {
let binding_mode = ty::BindingMode::BindByValue(mutability.into());
Some(ClearCrossCrate::Set(BindingForm::Var(VarBindingForm {
binding_mode,
opt_ty_info,
opt_match_place: Some((Some(place.clone()), span)),
pat_span: span,
})))
};
self.var_indices.insert(var, LocalsForNode::One(local));
}
_ => {
scope = self.declare_bindings(
scope,
ast_body.span,
&pattern,
matches::ArmHasGuard(false),
Some((Some(&place), span)),
);
unpack!(block = self.place_into_pattern(block, pattern, &place, false));
}
}
}
}
// Enter the argument pattern bindings source scope, if it exists.
if let Some(source_scope) = scope {
self.source_scope = source_scope;
}
let body = self.hir.mirror(ast_body);
self.into(&Place::RETURN_PLACE, block, body)
}
fn get_unit_temp(&mut self) -> Place<'tcx> {
match self.unit_temp {
Some(ref tmp) => tmp.clone(),
None => {
let ty = self.hir.unit_ty();
let fn_span = self.fn_span;
let tmp = self.temp(ty, fn_span);
self.unit_temp = Some(tmp.clone());
tmp
}
}
}
fn return_block(&mut self) -> BasicBlock {
match self.cached_return_block {
Some(rb) => rb,
None => {
let rb = self.cfg.start_new_block();
self.cached_return_block = Some(rb);
rb
}
}
}
}
///////////////////////////////////////////////////////////////////////////
// Builder methods are broken up into modules, depending on what kind
// of thing is being lowered. Note that they use the `unpack` macro
// above extensively.
mod block;
mod cfg;
mod expr;
mod into;
mod matches;
mod misc;
mod scope;