diff --git a/src/libstd/sync/condvar.rs b/src/libstd/sync/condvar.rs index a18370dc68e18..389c9c4a0661d 100644 --- a/src/libstd/sync/condvar.rs +++ b/src/libstd/sync/condvar.rs @@ -12,11 +12,10 @@ use prelude::v1::*; use sync::atomic::{AtomicUsize, Ordering}; use sync::{mutex, MutexGuard, PoisonError}; -use sys::time::SteadyTime; use sys_common::condvar as sys; use sys_common::mutex as sys_mutex; use sys_common::poison::{self, LockResult}; -use time::Duration; +use time::{Instant, Duration}; /// A type indicating whether a timed wait on a condition variable returned /// due to a time out or not. @@ -345,14 +344,13 @@ impl StaticCondvar { where F: FnMut(LockResult<&mut T>) -> bool { // This could be made more efficient by pushing the implementation into // sys::condvar - let start = SteadyTime::now(); + let start = Instant::now(); let mut guard_result: LockResult> = Ok(guard); while !f(guard_result .as_mut() .map(|g| &mut **g) .map_err(|e| PoisonError::new(&mut **e.get_mut()))) { - let now = SteadyTime::now(); - let consumed = &now - &start; + let consumed = start.elapsed(); let guard = guard_result.unwrap_or_else(|e| e.into_inner()); let (new_guard_result, timed_out) = if consumed > dur { (Ok(guard), WaitTimeoutResult(true)) diff --git a/src/libstd/sys/common/mod.rs b/src/libstd/sys/common/mod.rs index 44c55d1e2c45f..5062be8cd631c 100644 --- a/src/libstd/sys/common/mod.rs +++ b/src/libstd/sys/common/mod.rs @@ -98,3 +98,22 @@ pub fn cleanup() { at_exit_imp::cleanup(); }); } + +// Computes (value*numer)/denom without overflow, as long as both +// (numer*denom) and the overall result fit into i64 (which is the case +// for our time conversions). +#[allow(dead_code)] // not used on all platforms +pub fn mul_div_u64(value: u64, numer: u64, denom: u64) -> u64 { + let q = value / denom; + let r = value % denom; + // Decompose value as (value/denom*denom + value%denom), + // substitute into (value*numer)/denom and simplify. + // r < denom, so (denom*numer) is the upper bound of (r*numer) + q * numer + r * numer / denom +} + +#[test] +fn test_muldiv() { + assert_eq!(mul_div_u64( 1_000_000_000_001, 1_000_000_000, 1_000_000), + 1_000_000_000_001_000); +} diff --git a/src/libstd/sys/unix/condvar.rs b/src/libstd/sys/unix/condvar.rs index 3e0f41933e641..2e1c1900b46b3 100644 --- a/src/libstd/sys/unix/condvar.rs +++ b/src/libstd/sys/unix/condvar.rs @@ -12,8 +12,7 @@ use cell::UnsafeCell; use libc; use ptr; use sys::mutex::{self, Mutex}; -use sys::time; -use time::Duration; +use time::{Instant, Duration}; pub struct Condvar { inner: UnsafeCell } @@ -53,7 +52,7 @@ impl Condvar { // stable time. pthread_cond_timedwait uses system time, but we want to // report timeout based on stable time. let mut sys_now = libc::timeval { tv_sec: 0, tv_usec: 0 }; - let stable_now = time::SteadyTime::now(); + let stable_now = Instant::now(); let r = libc::gettimeofday(&mut sys_now, ptr::null_mut()); debug_assert_eq!(r, 0); @@ -81,7 +80,7 @@ impl Condvar { // ETIMEDOUT is not a totally reliable method of determining timeout due // to clock shifts, so do the check ourselves - &time::SteadyTime::now() - &stable_now < dur + stable_now.elapsed() < dur } #[inline] diff --git a/src/libstd/sys/unix/time.rs b/src/libstd/sys/unix/time.rs index 5b60b821c3445..75319ce962cc3 100644 --- a/src/libstd/sys/unix/time.rs +++ b/src/libstd/sys/unix/time.rs @@ -8,30 +8,183 @@ // option. This file may not be copied, modified, or distributed // except according to those terms. -pub use self::inner::SteadyTime; +pub use self::inner::{Instant, SystemTime, UNIX_EPOCH}; const NSEC_PER_SEC: u64 = 1_000_000_000; #[cfg(any(target_os = "macos", target_os = "ios"))] mod inner { + use cmp::Ordering; + use fmt; use libc; - use time::Duration; - use ops::Sub; - use sync::Once; use super::NSEC_PER_SEC; + use sync::Once; + use sys::cvt; + use sys_common::mul_div_u64; + use time::Duration; - pub struct SteadyTime { + const USEC_PER_SEC: u64 = NSEC_PER_SEC / 1000; + + #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)] + pub struct Instant { t: u64 } - impl SteadyTime { - pub fn now() -> SteadyTime { - SteadyTime { - t: unsafe { libc::mach_absolute_time() }, + #[derive(Copy, Clone)] + pub struct SystemTime { + t: libc::timeval, + } + + pub const UNIX_EPOCH: SystemTime = SystemTime { + t: libc::timeval { + tv_sec: 0, + tv_usec: 0, + }, + }; + + impl Instant { + pub fn now() -> Instant { + Instant { t: unsafe { libc::mach_absolute_time() } } + } + + pub fn sub_instant(&self, other: &Instant) -> Duration { + let info = info(); + let diff = self.t.checked_sub(other.t) + .expect("second instant is later than self"); + let nanos = mul_div_u64(diff, info.numer as u64, info.denom as u64); + Duration::new(nanos / NSEC_PER_SEC, (nanos % NSEC_PER_SEC) as u32) + } + + pub fn add_duration(&self, other: &Duration) -> Instant { + Instant { + t: self.t.checked_add(dur2intervals(other)) + .expect("overflow when adding duration to instant"), + } + } + + pub fn sub_duration(&self, other: &Duration) -> Instant { + Instant { + t: self.t.checked_sub(dur2intervals(other)) + .expect("overflow when adding duration to instant"), + } + } + } + + impl SystemTime { + pub fn now() -> SystemTime { + let mut s = SystemTime { + t: libc::timeval { + tv_sec: 0, + tv_usec: 0, + }, + }; + cvt(unsafe { + libc::gettimeofday(&mut s.t, 0 as *mut _) + }).unwrap(); + return s + } + + pub fn sub_time(&self, other: &SystemTime) + -> Result { + if self >= other { + Ok(if self.t.tv_usec >= other.t.tv_usec { + Duration::new(self.t.tv_sec as u64 - other.t.tv_sec as u64, + (self.t.tv_usec as u32 - + other.t.tv_usec as u32) * 1000) + } else { + Duration::new(self.t.tv_sec as u64 - 1 - other.t.tv_sec as u64, + (self.t.tv_usec as u32 + (USEC_PER_SEC as u32) - + other.t.tv_usec as u32) * 1000) + }) + } else { + match other.sub_time(self) { + Ok(d) => Err(d), + Err(d) => Ok(d), + } + } + } + + pub fn add_duration(&self, other: &Duration) -> SystemTime { + let secs = (self.t.tv_sec as i64).checked_add(other.as_secs() as i64); + let mut secs = secs.expect("overflow when adding duration to time"); + + // Nano calculations can't overflow because nanos are <1B which fit + // in a u32. + let mut usec = (other.subsec_nanos() / 1000) + self.t.tv_usec as u32; + if usec > USEC_PER_SEC as u32 { + usec -= USEC_PER_SEC as u32; + secs = secs.checked_add(1).expect("overflow when adding \ + duration to time"); + } + SystemTime { + t: libc::timeval { + tv_sec: secs as libc::time_t, + tv_usec: usec as libc::suseconds_t, + }, + } + } + + pub fn sub_duration(&self, other: &Duration) -> SystemTime { + let secs = (self.t.tv_sec as i64).checked_sub(other.as_secs() as i64); + let mut secs = secs.expect("overflow when subtracting duration \ + from time"); + + // Similar to above, nanos can't overflow. + let mut usec = self.t.tv_usec as i32 - + (other.subsec_nanos() / 1000) as i32; + if usec < 0 { + usec += USEC_PER_SEC as i32; + secs = secs.checked_sub(1).expect("overflow when subtracting \ + duration from time"); + } + SystemTime { + t: libc::timeval { + tv_sec: secs as libc::time_t, + tv_usec: usec as libc::suseconds_t, + }, } } } + impl PartialEq for SystemTime { + fn eq(&self, other: &SystemTime) -> bool { + self.t.tv_sec == other.t.tv_sec && self.t.tv_usec == other.t.tv_usec + } + } + + impl Eq for SystemTime {} + + impl PartialOrd for SystemTime { + fn partial_cmp(&self, other: &SystemTime) -> Option { + Some(self.cmp(other)) + } + } + + impl Ord for SystemTime { + fn cmp(&self, other: &SystemTime) -> Ordering { + let me = (self.t.tv_sec, self.t.tv_usec); + let other = (other.t.tv_sec, other.t.tv_usec); + me.cmp(&other) + } + } + + impl fmt::Debug for SystemTime { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_struct("SystemTime") + .field("tv_sec", &self.t.tv_sec) + .field("tv_usec", &self.t.tv_usec) + .finish() + } + } + + fn dur2intervals(dur: &Duration) -> u64 { + let info = info(); + let nanos = dur.as_secs().checked_mul(NSEC_PER_SEC).and_then(|nanos| { + nanos.checked_add(dur.subsec_nanos() as u64) + }).expect("overflow converting duration to nanoseconds"); + mul_div_u64(nanos, info.denom as u64, info.numer as u64) + } + fn info() -> &'static libc::mach_timebase_info { static mut INFO: libc::mach_timebase_info = libc::mach_timebase_info { numer: 0, @@ -46,72 +199,190 @@ mod inner { &INFO } } - - #[unstable(feature = "libstd_sys_internals", issue = "0")] - impl<'a> Sub for &'a SteadyTime { - type Output = Duration; - - fn sub(self, other: &SteadyTime) -> Duration { - let info = info(); - let diff = self.t as u64 - other.t as u64; - let nanos = diff * info.numer as u64 / info.denom as u64; - Duration::new(nanos / NSEC_PER_SEC, (nanos % NSEC_PER_SEC) as u32) - } - } } #[cfg(not(any(target_os = "macos", target_os = "ios")))] mod inner { + use cmp::Ordering; + use fmt; use libc; - use time::Duration; - use ops::Sub; use super::NSEC_PER_SEC; + use sys::cvt; + use time::Duration; - pub struct SteadyTime { + #[derive(Copy, Clone)] + struct Timespec { t: libc::timespec, } - // Apparently android provides this in some other library? - // Bitrig's RT extensions are in the C library, not a separate librt - // OpenBSD and NaCl provide it via libc - #[cfg(not(any(target_os = "android", - target_os = "bitrig", - target_os = "netbsd", - target_os = "openbsd", - target_env = "musl", - target_os = "nacl")))] - #[link(name = "rt")] - extern {} - - impl SteadyTime { - pub fn now() -> SteadyTime { - let mut t = SteadyTime { + #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord)] + pub struct Instant { + t: Timespec, + } + + #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord)] + pub struct SystemTime { + t: Timespec, + } + + pub const UNIX_EPOCH: SystemTime = SystemTime { + t: Timespec { + t: libc::timespec { + tv_sec: 0, + tv_nsec: 0, + }, + }, + }; + + impl Instant { + pub fn now() -> Instant { + Instant { t: Timespec::now(libc::CLOCK_MONOTONIC) } + } + + pub fn sub_instant(&self, other: &Instant) -> Duration { + self.t.sub_timespec(&other.t).unwrap_or_else(|_| { + panic!("other was less than the current instant") + }) + } + + pub fn add_duration(&self, other: &Duration) -> Instant { + Instant { t: self.t.add_duration(other) } + } + + pub fn sub_duration(&self, other: &Duration) -> Instant { + Instant { t: self.t.sub_duration(other) } + } + } + + impl fmt::Debug for Instant { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_struct("Instant") + .field("tv_sec", &self.t.t.tv_sec) + .field("tv_nsec", &self.t.t.tv_nsec) + .finish() + } + } + + impl SystemTime { + pub fn now() -> SystemTime { + SystemTime { t: Timespec::now(libc::CLOCK_REALTIME) } + } + + pub fn sub_time(&self, other: &SystemTime) + -> Result { + self.t.sub_timespec(&other.t) + } + + pub fn add_duration(&self, other: &Duration) -> SystemTime { + SystemTime { t: self.t.add_duration(other) } + } + + pub fn sub_duration(&self, other: &Duration) -> SystemTime { + SystemTime { t: self.t.sub_duration(other) } + } + } + + impl fmt::Debug for SystemTime { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_struct("SystemTime") + .field("tv_sec", &self.t.t.tv_sec) + .field("tv_nsec", &self.t.t.tv_nsec) + .finish() + } + } + + impl Timespec { + pub fn now(clock: libc::c_int) -> Timespec { + let mut t = Timespec { t: libc::timespec { tv_sec: 0, tv_nsec: 0, } }; - unsafe { - assert_eq!(0, libc::clock_gettime(libc::CLOCK_MONOTONIC, - &mut t.t)); - } + cvt(unsafe { + libc::clock_gettime(clock, &mut t.t) + }).unwrap(); t } - } - #[unstable(feature = "libstd_sys_internals", issue = "0")] - impl<'a> Sub for &'a SteadyTime { - type Output = Duration; - - fn sub(self, other: &SteadyTime) -> Duration { - if self.t.tv_nsec >= other.t.tv_nsec { - Duration::new(self.t.tv_sec as u64 - other.t.tv_sec as u64, - self.t.tv_nsec as u32 - other.t.tv_nsec as u32) + fn sub_timespec(&self, other: &Timespec) -> Result { + if self >= other { + Ok(if self.t.tv_nsec >= other.t.tv_nsec { + Duration::new((self.t.tv_sec - other.t.tv_sec) as u64, + (self.t.tv_nsec - other.t.tv_nsec) as u32) + } else { + Duration::new((self.t.tv_sec - 1 - other.t.tv_sec) as u64, + self.t.tv_nsec as u32 + (NSEC_PER_SEC as u32) - + other.t.tv_nsec as u32) + }) } else { - Duration::new(self.t.tv_sec as u64 - 1 - other.t.tv_sec as u64, - self.t.tv_nsec as u32 + (NSEC_PER_SEC as u32) - - other.t.tv_nsec as u32) + match other.sub_timespec(self) { + Ok(d) => Err(d), + Err(d) => Ok(d), + } + } + } + + fn add_duration(&self, other: &Duration) -> Timespec { + let secs = (self.t.tv_sec as i64).checked_add(other.as_secs() as i64); + let mut secs = secs.expect("overflow when adding duration to time"); + + // Nano calculations can't overflow because nanos are <1B which fit + // in a u32. + let mut nsec = other.subsec_nanos() + self.t.tv_nsec as u32; + if nsec > NSEC_PER_SEC as u32 { + nsec -= NSEC_PER_SEC as u32; + secs = secs.checked_add(1).expect("overflow when adding \ + duration to time"); + } + Timespec { + t: libc::timespec { + tv_sec: secs as libc::time_t, + tv_nsec: nsec as libc::c_long, + }, + } + } + + fn sub_duration(&self, other: &Duration) -> Timespec { + let secs = (self.t.tv_sec as i64).checked_sub(other.as_secs() as i64); + let mut secs = secs.expect("overflow when subtracting duration \ + from time"); + + // Similar to above, nanos can't overflow. + let mut nsec = self.t.tv_nsec as i32 - other.subsec_nanos() as i32; + if nsec < 0 { + nsec += NSEC_PER_SEC as i32; + secs = secs.checked_sub(1).expect("overflow when subtracting \ + duration from time"); + } + Timespec { + t: libc::timespec { + tv_sec: secs as libc::time_t, + tv_nsec: nsec as libc::c_long, + }, } } } + + impl PartialEq for Timespec { + fn eq(&self, other: &Timespec) -> bool { + self.t.tv_sec == other.t.tv_sec && self.t.tv_nsec == other.t.tv_nsec + } + } + + impl Eq for Timespec {} + + impl PartialOrd for Timespec { + fn partial_cmp(&self, other: &Timespec) -> Option { + Some(self.cmp(other)) + } + } + + impl Ord for Timespec { + fn cmp(&self, other: &Timespec) -> Ordering { + let me = (self.t.tv_sec, self.t.tv_nsec); + let other = (other.t.tv_sec, other.t.tv_nsec); + me.cmp(&other) + } + } } diff --git a/src/libstd/sys/windows/c.rs b/src/libstd/sys/windows/c.rs index 42f182eb01066..7ef504fba81e0 100644 --- a/src/libstd/sys/windows/c.rs +++ b/src/libstd/sys/windows/c.rs @@ -65,6 +65,7 @@ pub type LPWSANETWORKEVENTS = *mut WSANETWORKEVENTS; pub type LPWSAPROTOCOLCHAIN = *mut WSAPROTOCOLCHAIN; pub type LPWSAPROTOCOL_INFO = *mut WSAPROTOCOL_INFO; pub type LPWSTR = *mut WCHAR; +pub type LPFILETIME = *mut FILETIME; pub type PCONDITION_VARIABLE = *mut CONDITION_VARIABLE; pub type PLARGE_INTEGER = *mut c_longlong; @@ -1231,6 +1232,7 @@ extern "system" { ReturnValue: LPVOID, OriginalContext: *const CONTEXT, HistoryTable: *const UNWIND_HISTORY_TABLE); + pub fn GetSystemTimeAsFileTime(lpSystemTimeAsFileTime: LPFILETIME); } // Functions that aren't available on Windows XP, but we still use them and just diff --git a/src/libstd/sys/windows/time.rs b/src/libstd/sys/windows/time.rs index 707e8c05e17c8..058587b11dc19 100644 --- a/src/libstd/sys/windows/time.rs +++ b/src/libstd/sys/windows/time.rs @@ -8,62 +8,183 @@ // option. This file may not be copied, modified, or distributed // except according to those terms. -use ops::Sub; +use cmp::Ordering; +use fmt; +use mem; use sync::Once; use sys::c; +use sys::cvt; +use sys_common::mul_div_u64; use time::Duration; const NANOS_PER_SEC: u64 = 1_000_000_000; +const INTERVALS_PER_SEC: u64 = NANOS_PER_SEC / 100; -pub struct SteadyTime { +#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)] +pub struct Instant { t: c::LARGE_INTEGER, } -impl SteadyTime { - pub fn now() -> SteadyTime { - let mut t = SteadyTime { t: 0 }; - unsafe { c::QueryPerformanceCounter(&mut t.t); } +#[derive(Copy, Clone)] +pub struct SystemTime { + t: c::FILETIME, +} + +const INTERVALS_TO_UNIX_EPOCH: u64 = 11_644_473_600 * INTERVALS_PER_SEC; + +pub const UNIX_EPOCH: SystemTime = SystemTime { + t: c::FILETIME { + dwLowDateTime: INTERVALS_TO_UNIX_EPOCH as u32, + dwHighDateTime: (INTERVALS_TO_UNIX_EPOCH >> 32) as u32, + }, +}; + +impl Instant { + pub fn now() -> Instant { + let mut t = Instant { t: 0 }; + cvt(unsafe { + c::QueryPerformanceCounter(&mut t.t) + }).unwrap(); t } + + pub fn sub_instant(&self, other: &Instant) -> Duration { + // Values which are +- 1 need to be considered as basically the same + // units in time due to various measurement oddities, according to + // Windows [1] + // + // [1]: + // https://msdn.microsoft.com/en-us/library/windows/desktop + // /dn553408%28v=vs.85%29.aspx#guidance + if other.t > self.t && other.t - self.t == 1 { + return Duration::new(0, 0) + } + let diff = (self.t as u64).checked_sub(other.t as u64) + .expect("specified instant was later than \ + self"); + let nanos = mul_div_u64(diff, NANOS_PER_SEC, frequency() as u64); + Duration::new(nanos / NANOS_PER_SEC, (nanos % NANOS_PER_SEC) as u32) + } + + pub fn add_duration(&self, other: &Duration) -> Instant { + let freq = frequency() as u64; + let t = other.as_secs().checked_mul(freq).and_then(|i| { + (self.t as u64).checked_add(i) + }).and_then(|i| { + i.checked_add(mul_div_u64(other.subsec_nanos() as u64, freq, + NANOS_PER_SEC)) + }).expect("overflow when adding duration to time"); + Instant { + t: t as c::LARGE_INTEGER, + } + } + + pub fn sub_duration(&self, other: &Duration) -> Instant { + let freq = frequency() as u64; + let t = other.as_secs().checked_mul(freq).and_then(|i| { + (self.t as u64).checked_sub(i) + }).and_then(|i| { + i.checked_sub(mul_div_u64(other.subsec_nanos() as u64, freq, + NANOS_PER_SEC)) + }).expect("overflow when subtracting duration from time"); + Instant { + t: t as c::LARGE_INTEGER, + } + } } -fn frequency() -> c::LARGE_INTEGER { - static mut FREQUENCY: c::LARGE_INTEGER = 0; - static ONCE: Once = Once::new(); +impl SystemTime { + pub fn now() -> SystemTime { + unsafe { + let mut t: SystemTime = mem::zeroed(); + c::GetSystemTimeAsFileTime(&mut t.t); + return t + } + } - unsafe { - ONCE.call_once(|| { - c::QueryPerformanceFrequency(&mut FREQUENCY); - }); - FREQUENCY + fn from_intervals(intervals: i64) -> SystemTime { + SystemTime { + t: c::FILETIME { + dwLowDateTime: intervals as c::DWORD, + dwHighDateTime: (intervals >> 32) as c::DWORD, + } + } + } + + fn intervals(&self) -> i64 { + (self.t.dwLowDateTime as i64) | ((self.t.dwHighDateTime as i64) << 32) + } + + pub fn sub_time(&self, other: &SystemTime) -> Result { + let me = self.intervals(); + let other = other.intervals(); + if me >= other { + Ok(intervals2dur((me - other) as u64)) + } else { + Err(intervals2dur((other - me) as u64)) + } + } + + pub fn add_duration(&self, other: &Duration) -> SystemTime { + let intervals = self.intervals().checked_add(dur2intervals(other)) + .expect("overflow when adding duration to time"); + SystemTime::from_intervals(intervals) + } + + pub fn sub_duration(&self, other: &Duration) -> SystemTime { + let intervals = self.intervals().checked_sub(dur2intervals(other)) + .expect("overflow when subtracting from time"); + SystemTime::from_intervals(intervals) } } -#[unstable(feature = "libstd_sys_internals", issue = "0")] -impl<'a> Sub for &'a SteadyTime { - type Output = Duration; +impl PartialEq for SystemTime { + fn eq(&self, other: &SystemTime) -> bool { + self.intervals() == other.intervals() + } +} - fn sub(self, other: &SteadyTime) -> Duration { - let diff = self.t as u64 - other.t as u64; - let nanos = mul_div_u64(diff, NANOS_PER_SEC, frequency() as u64); - Duration::new(nanos / NANOS_PER_SEC, (nanos % NANOS_PER_SEC) as u32) +impl Eq for SystemTime {} + +impl PartialOrd for SystemTime { + fn partial_cmp(&self, other: &SystemTime) -> Option { + Some(self.cmp(other)) + } +} + +impl Ord for SystemTime { + fn cmp(&self, other: &SystemTime) -> Ordering { + self.intervals().cmp(&other.intervals()) } } -// Computes (value*numer)/denom without overflow, as long as both -// (numer*denom) and the overall result fit into i64 (which is the case -// for our time conversions). -fn mul_div_u64(value: u64, numer: u64, denom: u64) -> u64 { - let q = value / denom; - let r = value % denom; - // Decompose value as (value/denom*denom + value%denom), - // substitute into (value*numer)/denom and simplify. - // r < denom, so (denom*numer) is the upper bound of (r*numer) - q * numer + r * numer / denom +impl fmt::Debug for SystemTime { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + f.debug_struct("SystemTime") + .field("intervals", &self.intervals()) + .finish() + } } -#[test] -fn test_muldiv() { - assert_eq!(mul_div_u64( 1_000_000_000_001, 1_000_000_000, 1_000_000), - 1_000_000_000_001_000); +fn dur2intervals(d: &Duration) -> i64 { + d.as_secs().checked_mul(INTERVALS_PER_SEC).and_then(|i| { + i.checked_add(d.subsec_nanos() as u64 / 100) + }).expect("overflow when converting duration to intervals") as i64 +} + +fn intervals2dur(intervals: u64) -> Duration { + Duration::new(intervals / INTERVALS_PER_SEC, + ((intervals % INTERVALS_PER_SEC) * 100) as u32) +} + +fn frequency() -> c::LARGE_INTEGER { + static mut FREQUENCY: c::LARGE_INTEGER = 0; + static ONCE: Once = Once::new(); + + unsafe { + ONCE.call_once(|| { + cvt(c::QueryPerformanceFrequency(&mut FREQUENCY)).unwrap(); + }); + FREQUENCY + } } diff --git a/src/libstd/time/duration.rs b/src/libstd/time/duration.rs index ca04ec81a288c..63d517606a031 100644 --- a/src/libstd/time/duration.rs +++ b/src/libstd/time/duration.rs @@ -9,7 +9,7 @@ // except according to those terms. use ops::{Add, Sub, Mul, Div}; -use sys::time::SteadyTime; +use time::Instant; const NANOS_PER_SEC: u32 = 1_000_000_000; const NANOS_PER_MILLI: u32 = 1_000_000; @@ -67,9 +67,9 @@ impl Duration { abstraction", issue = "27799")] pub fn span(f: F) -> Duration where F: FnOnce() { - let start = SteadyTime::now(); + let start = Instant::now(); f(); - &SteadyTime::now() - &start + start.elapsed() } /// Creates a new `Duration` from the specified number of seconds. diff --git a/src/libstd/time/mod.rs b/src/libstd/time/mod.rs index 446fbae52f6bb..95f68712be2b4 100644 --- a/src/libstd/time/mod.rs +++ b/src/libstd/time/mod.rs @@ -12,7 +12,311 @@ #![stable(feature = "time", since = "1.3.0")] +use error::Error; +use fmt; +use ops::{Add, Sub}; +use sys::time; + #[stable(feature = "time", since = "1.3.0")] pub use self::duration::Duration; mod duration; + +/// A measurement of a monotonically increasing clock which is suitable for +/// measuring the amount of time that an operation takes. +/// +/// Instants are guaranteed always be greater than any previously measured +/// instant when created, and are often useful for tasks such as measuring +/// benchmarks or timing how long an operation takes. +/// +/// Note, however, that instants are not guaranteed to be **steady**. In other +/// words each tick of the underlying clock may not be the same length (e.g. +/// some seconds may be longer than others). An instant may jump forwards or +/// experience time dilation (slow down or speed up), but it will never go +/// backwards. +/// +/// Instants are opaque types that can only be compared to one another. There is +/// no method to get "the number of seconds" from an instant but instead it only +/// allow learning the duration between two instants (or comparing two +/// instants). +#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord)] +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +pub struct Instant(time::Instant); + +/// A measurement of the system clock appropriate for timestamps such as those +/// on files on the filesystem. +/// +/// Distinct from the `Instant` type, this time measurement **is not +/// monotonic**. This means that you can save a file to the file system, then +/// save another file to the file system, **and the second file has a +/// `SystemTime` measurement earlier than the second**. In other words, an +/// operation that happens after another operation in real time may have an +/// earlier `SystemTime`! +/// +/// Consequently, comparing two `SystemTime` instances to learn about the +/// duration between them returns a `Result` instead of an infallible `Duration` +/// to indicate that this sort of time drift may happen and needs to be handled. +/// +/// Although a `SystemTime` cannot be directly inspected, the `UNIX_EPOCH` +/// constant is provided in this module as an anchor in time to learn +/// information about a `SystemTime`. By calculating the duration from this +/// fixed point in time a `SystemTime` can be converted to a human-readable time +/// or perhaps some other string representation. +#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord)] +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +pub struct SystemTime(time::SystemTime); + +/// An error returned from the `duration_from_earlier` method on `SystemTime`, +/// used to learn about why how far in the opposite direction a timestamp lies. +#[derive(Clone, Debug)] +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +pub struct SystemTimeError(Duration); + +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +impl Instant { + /// Returns an instant corresponding to "now". + pub fn now() -> Instant { + Instant(time::Instant::now()) + } + + /// Returns the amount of time elapsed from another instant to this one. + /// + /// # Panics + /// + /// This function will panic if `earlier` is later than `self`, which should + /// only be possible if `earlier` was created after `self`. Because + /// `Instant` is monotonic, the only time that this should happen should be + /// a bug. + pub fn duration_from_earlier(&self, earlier: Instant) -> Duration { + self.0.sub_instant(&earlier.0) + } + + /// Returns the amount of time elapsed since this instant was created. + /// + /// # Panics + /// + /// This function may panic if the current time is earlier than this instant + /// which can happen if an `Instant` is produced synthetically. + pub fn elapsed(&self) -> Duration { + Instant::now().duration_from_earlier(*self) + } +} + +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +impl Add for Instant { + type Output = Instant; + + fn add(self, other: Duration) -> Instant { + Instant(self.0.add_duration(&other)) + } +} + +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +impl Sub for Instant { + type Output = Instant; + + fn sub(self, other: Duration) -> Instant { + Instant(self.0.sub_duration(&other)) + } +} + +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +impl fmt::Debug for Instant { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + self.0.fmt(f) + } +} + +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +impl SystemTime { + /// Returns the system time corresponding to "now". + pub fn now() -> SystemTime { + SystemTime(time::SystemTime::now()) + } + + /// Returns the amount of time elapsed from an earlier point in time. + /// + /// This function may fail because measurements taken earlier are not + /// guaranteed to always be before later measurements (due to anomalies such + /// as the system clock being adjusted either forwards or backwards). + /// + /// If successful, `Ok(duration)` is returned where the duration represents + /// the amount of time elapsed from the specified measurement to this one. + /// + /// Returns an `Err` if `earlier` is later than `self`, and the error + /// contains how far from `self` the time is. + pub fn duration_from_earlier(&self, earlier: SystemTime) + -> Result { + self.0.sub_time(&earlier.0).map_err(SystemTimeError) + } + + /// Returns the amount of time elapsed since this system time was created. + /// + /// This function may fail as the underlying system clock is susceptible to + /// drift and updates (e.g. the system clock could go backwards), so this + /// function may not always succeed. If successful, `Ok(duration)` is + /// returned where the duration represents the amount of time elapsed from + /// this time measurement to the current time. + /// + /// Returns an `Err` if `self` is later than the current system time, and + /// the error contains how far from the current system time `self` is. + pub fn elapsed(&self) -> Result { + SystemTime::now().duration_from_earlier(*self) + } +} + +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +impl Add for SystemTime { + type Output = SystemTime; + + fn add(self, dur: Duration) -> SystemTime { + SystemTime(self.0.add_duration(&dur)) + } +} + +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +impl Sub for SystemTime { + type Output = SystemTime; + + fn sub(self, dur: Duration) -> SystemTime { + SystemTime(self.0.sub_duration(&dur)) + } +} + +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +impl fmt::Debug for SystemTime { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + self.0.fmt(f) + } +} + +/// An anchor in time which can be used to create new `SystemTime` instances or +/// learn about where in time a `SystemTime` lies. +/// +/// This constant is defined to be "1970-01-01 00:00:00 UTC" on all systems with +/// respect to the system clock. Using `duration_from_earlier` on an existing +/// `SystemTime` instance can tell how far away from this point in time a +/// measurement lies, and using `UNIX_EPOCH + duration` can be used to create a +/// `SystemTime` instance to represent another fixed point in time. +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +pub const UNIX_EPOCH: SystemTime = SystemTime(time::UNIX_EPOCH); + +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +impl SystemTimeError { + /// Returns the positive duration which represents how far forward the + /// second system time was from the first. + /// + /// A `SystemTimeError` is returned from the `duration_from_earlier` + /// operation whenever the second duration, `earlier`, actually represents a + /// point later in time than the `self` of the method call. This function + /// will extract and return the amount of time later `earlier` actually is. + pub fn duration(&self) -> Duration { + self.0 + } +} + +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +impl Error for SystemTimeError { + fn description(&self) -> &str { "other time was not earlier than self" } +} + +#[unstable(feature = "time2", reason = "recently added", issue = "29866")] +impl fmt::Display for SystemTimeError { + fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { + write!(f, "second time provided was later than self") + } +} + +#[cfg(test)] +mod tests { + use super::{Instant, SystemTime, Duration, UNIX_EPOCH}; + + #[test] + fn instant_monotonic() { + let a = Instant::now(); + let b = Instant::now(); + assert!(b >= a); + } + + #[test] + fn instant_elapsed() { + let a = Instant::now(); + a.elapsed(); + } + + #[test] + fn instant_math() { + let a = Instant::now(); + let b = Instant::now(); + let dur = b.duration_from_earlier(a); + assert_eq!(b - dur, a); + assert_eq!(a + dur, b); + + let second = Duration::new(1, 0); + assert_eq!(a - second + second, a); + } + + #[test] + #[should_panic] + fn instant_duration_panic() { + let a = Instant::now(); + (a - Duration::new(1, 0)).duration_from_earlier(a); + } + + #[test] + fn system_time_math() { + let a = SystemTime::now(); + let b = SystemTime::now(); + match b.duration_from_earlier(a) { + Ok(dur) if dur == Duration::new(0, 0) => { + assert_eq!(a, b); + } + Ok(dur) => { + assert!(b > a); + assert_eq!(b - dur, a); + assert_eq!(a + dur, b); + } + Err(dur) => { + let dur = dur.duration(); + assert!(a > b); + assert_eq!(b + dur, a); + assert_eq!(b - dur, a); + } + } + + let second = Duration::new(1, 0); + assert_eq!(a.duration_from_earlier(a - second).unwrap(), second); + assert_eq!(a.duration_from_earlier(a + second).unwrap_err().duration(), + second); + + assert_eq!(a - second + second, a); + + let eighty_years = second * 60 * 60 * 24 * 365 * 80; + assert_eq!(a - eighty_years + eighty_years, a); + assert_eq!(a - (eighty_years * 10) + (eighty_years * 10), a); + } + + #[test] + fn system_time_elapsed() { + let a = SystemTime::now(); + drop(a.elapsed()); + } + + #[test] + fn since_epoch() { + let ts = SystemTime::now(); + let a = ts.duration_from_earlier(UNIX_EPOCH).unwrap(); + let b = ts.duration_from_earlier(UNIX_EPOCH - Duration::new(1, 0)).unwrap(); + assert!(b > a); + assert_eq!(b - a, Duration::new(1, 0)); + + // let's assume that we're all running computers later than 2000 + let thirty_years = Duration::new(1, 0) * 60 * 60 * 24 * 365 * 30; + assert!(a > thirty_years); + + // let's assume that we're all running computers earlier than 2090. + // Should give us ~70 years to fix this! + let hundred_twenty_years = thirty_years * 4; + assert!(a < hundred_twenty_years); + } +}