
Control Flow Guard for Rust
Andrew Paverd <andrew.paverd@microsoft.com>

This document describes the technical design of Control Flow Guard (CFG) for Rust.

Rust tracking issue: Tracking issue for `-Z control_flow_guard` #68793

Control Flow Guard background
Control Flow Guard (CFG) is an exploit mitigation designed to enforce control-flow integrity for

software running on supported Windows platforms. Specifically, CFG uses runtime checks to validate

the target address of every indirect call/jump before allowing the call to complete.

During compilation, the compiler identifies all indirect calls/jumps and adds CFG checks. It also emits

metadata containing the relative addresses of all address-taken functions. At runtime, if the binary is

run on a CFG-aware operating system1, the loader uses the CFG metadata to generate a bitmap of

the address space and marks those addresses that contain valid targets. On each indirect call, the

inserted check determines whether the target address is marked in this bitmap. If the target is not

valid, the process is terminated.

CFG is complementary to other exploit mitigations, such as Address Space Layout Randomization

(ASLR) and Data Execution Prevention (DEP), which are available for Rust code linked with MSVC.

In terms of interoperability:

• Code compiled with CFG enabled can be linked with libraries and object files that are not

compiled with CFG. In this case, a CFG-aware linker can identify address-taken functions in

the non-CFG libraries.

• Libraries compiled with CFG can linked into non-CFG programs. In this case, the CFG runtime

checks in the libraries are not used (i.e. the mitigation is completely disabled).

Control Flow Guard in Rust
The primary motivation for enabling CFG in Rust is to enhance security when linking against non-

Rust code, especially C/C++ code. To achieve full CFG protection, all indirect calls (including any from

Rust code) must have the appropriate CFG checks. The following table summarizes the potential for

control flow integrity violations without and with CFG for Rust.

Without Rust CFG With Rust CFG

Rust program
calling C/C++

No CFG protection for either Rust or non-Rust
code. Potential for control flow integrity
violations arising from either C/C++ code or
unsafe Rust.

All indirect calls/jumps
protected.

C/C++ program2
calling Rust

Program can have CFG enabled, but indirect
calls in the Rust code will be unprotected.
Potential for control flow integrity violations if
vulnerabilities in the C/C++ code allow
corruption of control flow information in Rust.

All indirect calls/jumps
protected.

1 CFG is available in Windows operating systems from Windows 8.1 onwards.
2 Assuming CFG is enabled for the C/C++ program.

https://github.com/rust-lang/rust/issues/68793
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard

CFG can also improve security for Rust code that uses the `unsafe` keyword. The following contrived

example demonstrates a violation of control flow integrity3 in Rust:

fn add_one(x: &mut i32) {
 *x += 1;
}

// Return a function pointer into the middle of the above function
fn get_add_one_fptr() -> fn(&mut i32) {
 return unsafe {std::mem::transmute::<*const u8, fn(&mut i32)>((add_one as
 *const u8).offset(0x28))};
}

fn main() {
 // Calling the function by name behaves as expected
 let mut x = 1;
 add_one(&mut x);
 println!("Calling function by name: 1 + 1 = {}", x);

 // Calling via the function pointer leads to invalid control flow
 let mut x = 1;
 let func_ptr = get_add_one_fptr();
 func_ptr(&mut x);
 println!("Calling by function pointer: 1 + 1 = {}", x);
}

When compiled without CFG, the output of the above program4 is:

Calling function by name: 1 + 1 = 2
Calling by function pointer: 1 + 1 = 1

When compiled with CFG enabled, the above program is terminated before the invalid call

completes.

Using CFG in Rust
Enabling CFG does not require developers to make code changes. Developers can enable CFG using

the `control_flow_guard=checks` compiler option.

For testing and debugging purposes, the `control_flow_guard=nochecks` option emits CFG metadata

without adding runtime checks (this should not be used in production as it does not provide security

enforcement). These flags are ignored on all non-Windows targets.

3 Further examples of violating control flow integrity in unsafe Rust are available at:
http://cs242.stanford.edu/assets/projects/2017/songyang.pdf
4 Note: the 0x28 offset may need to be modified depending on the platform.

http://cs242.stanford.edu/assets/projects/2017/songyang.pdf

Implementation in rustc
All CFG functionality is implemented in LLVM5. LLVM 10.0 supports CFG for x86 (32 and 64 bit), ARM,

and Aarch64 targets. The role of rustc is to parse the above compiler options and pass this

information down to LLVM. Specifically, to enable CFG for an LLVM compilation module, rustc must

add the `cfguard` LLVM module flag with a value of 1 (emit metadata but no checks) or 2 (emit

metadata and checks). The compiler must also pass the `/guard:cf` option to the MSVC linker.

Relevant files:

• src/librustc_codegen_llvm/context.rs

• src/librustc_codegen_ssa/back/linker.rs

The following test cases have been added:

• Ensure the LLVM module flag is correctly set when checks are requested

(src/test/codegen/cfguard_checks.rs)

• Ensure the LLVM module flag is not set when CFG is not requested

(src/test/codegen/cfguard_disabled.rs)

• Ensure the LLVM module flag is correctly set when only CFG metadata is requested

(src/test/codegen/cfguard_nochecks.rs)

Enabling CFG in libraries
To provide full protection, CFG should be enabled for the Rust standard library. If building the

standard library from source, this can be done by setting `control-flow-guard = true` in the

config.toml file.

This can also be achieved using cargo’s `-Z build-std` functionality to recompile the standard library

with the same configuration options as the main program. For example:

CMD
rustup toolchain install --force nightly
rustup component add rust-src
SET RUSTFLAGS=-Z control_flow_guard=checks
cargo +nightly build -Z build-std --target x86_64-pc-windows-msvc

Powershell
rustup toolchain install --force nightly
rustup component add rust-src
$Env:RUSTFLAGS = "-Z control_flow_guard=checks"
cargo +nightly build -Z build-std --target x86_64-pc-windows-msvc

Ideally, the distributed version of the standard library would be compiled with CFG enabled, so that

it includes the necessary runtime checks and metadata. The runtime checks would only be used if

the final program is compiled with CFG enabled.

5 For full details of the LLVM implementation, please see: https://reviews.llvm.org/D65761

https://github.com/rust-lang/rust/blob/master/src/librustc_codegen_llvm/context.rs
https://github.com/rust-lang/rust/blob/master/src/librustc_codegen_ssa/back/linker.rs
https://github.com/rust-lang/rust/blob/master/src/test/codegen/cfguard_checks.rs
https://github.com/rust-lang/rust/blob/master/src/test/codegen/cfguard_disabled.rs
https://github.com/rust-lang/rust/blob/master/src/test/codegen/cfguard_nochecks.rs
https://doc.rust-lang.org/nightly/cargo/reference/unstable.html#build-std
https://reviews.llvm.org/D65761

Overhead of Control Flow Guard
The CFG checks and metadata can potentially increase binary size and runtime overhead. The

magnitude of any increase depends on the number and frequency of indirect calls.

Binary size: Enabling CFG for the Rust standard library increases binary size by approximately 0.14%.

Runtime overhead6: Enabling CFG in the SPEC CPU 2017 Integer Speed benchmark suite (compiled

with Clang/LLVM) incurs approximate runtime overheads of up to 8%, as shown in the table below,

with a geometric mean of 2.9%.

Benchmark7 Without CFG (seconds) With CFG (seconds) Overhead

600.perlbench_s 314 322 2.5%

602.gcc_s 538 546 1.5%

605.mcf_s 723 767 6.1%

620.omnetpp_s 486 521 7.2%

623.xalancbmk_s 225 243 8.0%

625.x264_s 186 193 3.8%

631.deepsjeng_s 326 323 -0.9%

641.leela_s 435 428 -1.6%

657.xz_s 487 488 0.2%

Geometric mean 381.6 392.7 2.9%

Use in other systems
OS support: CFG is enabled for the majority of components and libraries in the Windows operating

system.

Compiler support: CFG support is available in Microsoft Visual Studio and was added to Clang/LLVM

in version 10.0.

6 Currently there are no standardized runtime benchmarks for Rust on Windows, so the SPEC CPU 2017
benchmarks are given as representative overhead estimates.
7 Quoted times are the median of three runs. The 648.exchange2_s benchmark requires Fortran, so was not
included.

