-
Notifications
You must be signed in to change notification settings - Fork 275
/
x86.rs
253 lines (227 loc) · 11.2 KB
/
x86.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
//! x86 run-time feature detection is OS independent.
#[cfg(target_arch = "x86")]
use crate::arch::x86::*;
#[cfg(target_arch = "x86_64")]
use crate::arch::x86_64::*;
use crate::mem;
use crate::detect::{bit, cache, Feature};
/// Run-time feature detection on x86 works by using the CPUID instruction.
///
/// The [CPUID Wikipedia page][wiki_cpuid] contains
/// all the information about which flags to set to query which values, and in
/// which registers these are reported.
///
/// The definitive references are:
/// - [Intel 64 and IA-32 Architectures Software Developer's Manual Volume 2:
/// Instruction Set Reference, A-Z][intel64_ref].
/// - [AMD64 Architecture Programmer's Manual, Volume 3: General-Purpose and
/// System Instructions][amd64_ref].
///
/// [wiki_cpuid]: https://en.wikipedia.org/wiki/CPUID
/// [intel64_ref]: http://www.intel.de/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
/// [amd64_ref]: http://support.amd.com/TechDocs/24594.pdf
#[allow(clippy::similar_names)]
pub(crate) fn detect_features() -> cache::Initializer {
let mut value = cache::Initializer::default();
// If the x86 CPU does not support the CPUID instruction then it is too
// old to support any of the currently-detectable features.
if !has_cpuid() {
return value;
}
// Calling `__cpuid`/`__cpuid_count` from here on is safe because the CPU
// has `cpuid` support.
// 0. EAX = 0: Basic Information:
// - EAX returns the "Highest Function Parameter", that is, the maximum
// leaf value for subsequent calls of `cpuinfo` in range [0,
// 0x8000_0000]. - The vendor ID is stored in 12 u8 ascii chars,
// returned in EBX, EDX, and ECX (in that order):
let (max_basic_leaf, vendor_id) = unsafe {
let CpuidResult {
eax: max_basic_leaf,
ebx,
ecx,
edx,
} = __cpuid(0);
let vendor_id: [[u8; 4]; 3] = [
mem::transmute(ebx),
mem::transmute(edx),
mem::transmute(ecx),
];
let vendor_id: [u8; 12] = mem::transmute(vendor_id);
(max_basic_leaf, vendor_id)
};
if max_basic_leaf < 1 {
// Earlier Intel 486, CPUID not implemented
return value;
}
// EAX = 1, ECX = 0: Queries "Processor Info and Feature Bits";
// Contains information about most x86 features.
let CpuidResult {
ecx: proc_info_ecx,
edx: proc_info_edx,
..
} = unsafe { __cpuid(0x0000_0001_u32) };
// EAX = 7, ECX = 0: Queries "Extended Features";
// Contains information about bmi,bmi2, and avx2 support.
let (extended_features_ebx, extended_features_ecx) = if max_basic_leaf >= 7 {
let CpuidResult { ebx, ecx, .. } = unsafe { __cpuid(0x0000_0007_u32) };
(ebx, ecx)
} else {
(0, 0) // CPUID does not support "Extended Features"
};
// EAX = 0x8000_0000, ECX = 0: Get Highest Extended Function Supported
// - EAX returns the max leaf value for extended information, that is,
// `cpuid` calls in range [0x8000_0000; u32::MAX]:
let CpuidResult {
eax: extended_max_basic_leaf,
..
} = unsafe { __cpuid(0x8000_0000_u32) };
// EAX = 0x8000_0001, ECX=0: Queries "Extended Processor Info and Feature
// Bits"
let extended_proc_info_ecx = if extended_max_basic_leaf >= 1 {
let CpuidResult { ecx, .. } = unsafe { __cpuid(0x8000_0001_u32) };
ecx
} else {
0
};
{
// borrows value till the end of this scope:
let mut enable = |r, rb, f| {
if bit::test(r as usize, rb) {
value.set(f as u32);
}
};
enable(proc_info_ecx, 0, Feature::sse3);
enable(proc_info_ecx, 1, Feature::pclmulqdq);
enable(proc_info_ecx, 9, Feature::ssse3);
enable(proc_info_ecx, 13, Feature::cmpxchg16b);
enable(proc_info_ecx, 19, Feature::sse4_1);
enable(proc_info_ecx, 20, Feature::sse4_2);
enable(proc_info_ecx, 23, Feature::popcnt);
enable(proc_info_ecx, 25, Feature::aes);
enable(proc_info_ecx, 29, Feature::f16c);
enable(proc_info_ecx, 30, Feature::rdrand);
enable(extended_features_ebx, 18, Feature::rdseed);
enable(extended_features_ebx, 19, Feature::adx);
enable(extended_features_ebx, 11, Feature::rtm);
enable(proc_info_edx, 4, Feature::tsc);
enable(proc_info_edx, 23, Feature::mmx);
enable(proc_info_edx, 24, Feature::fxsr);
enable(proc_info_edx, 25, Feature::sse);
enable(proc_info_edx, 26, Feature::sse2);
enable(extended_features_ebx, 29, Feature::sha);
enable(extended_features_ebx, 3, Feature::bmi1);
enable(extended_features_ebx, 8, Feature::bmi2);
// `XSAVE` and `AVX` support:
let cpu_xsave = bit::test(proc_info_ecx as usize, 26);
if cpu_xsave {
// 0. Here the CPU supports `XSAVE`.
// 1. Detect `OSXSAVE`, that is, whether the OS is AVX enabled and
// supports saving the state of the AVX/AVX2 vector registers on
// context-switches, see:
//
// - [intel: is avx enabled?][is_avx_enabled],
// - [mozilla: sse.cpp][mozilla_sse_cpp].
//
// [is_avx_enabled]: https://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
// [mozilla_sse_cpp]: https://hg.mozilla.org/mozilla-central/file/64bab5cbb9b6/mozglue/build/SSE.cpp#l190
let cpu_osxsave = bit::test(proc_info_ecx as usize, 27);
if cpu_osxsave {
// 2. The OS must have signaled the CPU that it supports saving and
// restoring the:
//
// * SSE -> `XCR0.SSE[1]`
// * AVX -> `XCR0.AVX[2]`
// * AVX-512 -> `XCR0.AVX-512[7:5]`.
//
// by setting the corresponding bits of `XCR0` to `1`.
//
// This is safe because the CPU supports `xsave`
// and the OS has set `osxsave`.
let xcr0 = unsafe { _xgetbv(0) };
// Test `XCR0.SSE[1]` and `XCR0.AVX[2]` with the mask `0b110 == 6`:
let os_avx_support = xcr0 & 6 == 6;
// Test `XCR0.AVX-512[7:5]` with the mask `0b1110_0000 == 224`:
let os_avx512_support = xcr0 & 224 == 224;
// Only if the OS and the CPU support saving/restoring the AVX
// registers we enable `xsave` support:
if os_avx_support {
// See "13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED
// FEATURES" in the "Intel® 64 and IA-32 Architectures Software
// Developer’s Manual, Volume 1: Basic Architecture":
//
// "Software enables the XSAVE feature set by setting
// CR4.OSXSAVE[bit 18] to 1 (e.g., with the MOV to CR4
// instruction). If this bit is 0, execution of any of XGETBV,
// XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV
// causes an invalid-opcode exception (#UD)"
//
enable(proc_info_ecx, 26, Feature::xsave);
// For `xsaveopt`, `xsavec`, and `xsaves` we need to query:
// Processor Extended State Enumeration Sub-leaf (EAX = 0DH,
// ECX = 1):
if max_basic_leaf >= 0xd {
let CpuidResult {
eax: proc_extended_state1_eax,
..
} = unsafe { __cpuid_count(0xd_u32, 1) };
enable(proc_extended_state1_eax, 0, Feature::xsaveopt);
enable(proc_extended_state1_eax, 1, Feature::xsavec);
enable(proc_extended_state1_eax, 3, Feature::xsaves);
}
// FMA (uses 256-bit wide registers):
enable(proc_info_ecx, 12, Feature::fma);
// And AVX/AVX2:
enable(proc_info_ecx, 28, Feature::avx);
enable(extended_features_ebx, 5, Feature::avx2);
// For AVX-512 the OS also needs to support saving/restoring
// the extended state, only then we enable AVX-512 support:
if os_avx512_support {
enable(extended_features_ebx, 16, Feature::avx512f);
enable(extended_features_ebx, 17, Feature::avx512dq);
enable(extended_features_ebx, 21, Feature::avx512ifma);
enable(extended_features_ebx, 26, Feature::avx512pf);
enable(extended_features_ebx, 27, Feature::avx512er);
enable(extended_features_ebx, 28, Feature::avx512cd);
enable(extended_features_ebx, 30, Feature::avx512bw);
enable(extended_features_ebx, 31, Feature::avx512vl);
enable(extended_features_ecx, 1, Feature::avx512vbmi);
enable(extended_features_ecx, 5, Feature::avx512bf16);
enable(extended_features_ecx, 6, Feature::avx512vbmi2);
enable(extended_features_ecx, 8, Feature::avx512gfni);
enable(extended_features_ecx, 8, Feature::avx512vp2intersect);
enable(extended_features_ecx, 9, Feature::avx512vaes);
enable(extended_features_ecx, 10, Feature::avx512vpclmulqdq);
enable(extended_features_ecx, 11, Feature::avx512vnni);
enable(extended_features_ecx, 12, Feature::avx512bitalg);
enable(extended_features_ecx, 14, Feature::avx512vpopcntdq);
}
}
}
}
// This detects ABM on AMD CPUs and LZCNT on Intel CPUs.
// On intel CPUs with popcnt, lzcnt implements the
// "missing part" of ABM, so we map both to the same
// internal feature.
//
// The `is_x86_feature_detected!("lzcnt")` macro then
// internally maps to Feature::abm.
enable(extended_proc_info_ecx, 5, Feature::lzcnt);
// As Hygon Dhyana originates from AMD technology and shares most of the architecture with
// AMD's family 17h, but with different CPU Vendor ID("HygonGenuine")/Family series
// number(Family 18h).
//
// For CPUID feature bits, Hygon Dhyana(family 18h) share the same definition with AMD
// family 17h.
//
// Related AMD CPUID specification is https://www.amd.com/system/files/TechDocs/25481.pdf.
// Related Hygon kernel patch can be found on
// http://lkml.kernel.org/r/5ce86123a7b9dad925ac583d88d2f921040e859b.1538583282.git.puwen@hygon.cn
if vendor_id == *b"AuthenticAMD" || vendor_id == *b"HygonGenuine" {
// These features are available on AMD arch CPUs:
enable(extended_proc_info_ecx, 6, Feature::sse4a);
enable(extended_proc_info_ecx, 21, Feature::tbm);
}
}
value
}