-
Notifications
You must be signed in to change notification settings - Fork 130
/
tf_avg_checkpoints.py
executable file
·135 lines (114 loc) · 5.31 KB
/
tf_avg_checkpoints.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python3
# coding=utf-8
# Copyright 2020 The Tensor2Tensor Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Script to average values of variables in a list of checkpoint files.
This script is generic for any TF checkpoint. It is not specific to RETURNN.
Original code:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/avg_checkpoints.py
"""
from __future__ import annotations
import os
import numpy
import logging
import tensorflow as tf
import _setup_returnn_env # noqa
import returnn.tf.compat as tf_compat
from returnn.util import better_exchook
better_exchook.install()
flags = tf_compat.v1.flags
FLAGS = flags.FLAGS
flags.DEFINE_string("checkpoints", "", "Comma-separated list of checkpoints to average.")
flags.DEFINE_integer(
"num_last_checkpoints", 0, "Averages the last N saved checkpoints. If the checkpoints flag is set, this is ignored."
)
flags.DEFINE_string("prefix", "", "Prefix (e.g., directory) to append to each checkpoint.")
flags.DEFINE_string("output_path", "/tmp/averaged.ckpt", "Path to output the averaged checkpoint to.")
def checkpoint_exists(path):
"""
:param str path:
:rtype: bool
"""
return (
tf_compat.v1.gfile.Exists(path)
or tf_compat.v1.gfile.Exists(path + ".meta")
or tf_compat.v1.gfile.Exists(path + ".index")
)
def main(_):
"""
Main entry.
"""
_logger = logging.getLogger("tensorflow")
_logger.setLevel("INFO")
tf_compat.v1.logging.info("%s startup. TF version: %s" % (__file__, tf.__version__))
if FLAGS.checkpoints:
# Get the checkpoints list from flags and run some basic checks.
checkpoints = [c.strip() for c in FLAGS.checkpoints.split(",")]
checkpoints = [c for c in checkpoints if c]
if not checkpoints:
raise ValueError("No checkpoints provided for averaging.")
if FLAGS.prefix:
checkpoints = [FLAGS.prefix + c for c in checkpoints]
else:
assert FLAGS.num_last_checkpoints >= 1, "Must average at least one model"
assert FLAGS.prefix, "Prefix must be provided when averaging last N checkpoints"
checkpoint_state = tf.train.get_checkpoint_state(os.path.dirname(FLAGS.prefix))
# Checkpoints are ordered from oldest to newest.
checkpoints = checkpoint_state.all_model_checkpoint_paths[-FLAGS.num_last_checkpoints :]
checkpoints = [c for c in checkpoints if checkpoint_exists(c)]
if not checkpoints:
if FLAGS.checkpoints:
raise ValueError("None of the provided checkpoints exist. %s" % FLAGS.checkpoints)
else:
raise ValueError("Could not find checkpoints at %s" % os.path.dirname(FLAGS.prefix))
# Read variables from all checkpoints and average them.
tf_compat.v1.logging.info("Reading variables and averaging checkpoints:")
for c in checkpoints:
tf_compat.v1.logging.info("%s ", c)
var_list = tf.train.list_variables(checkpoints[0])
var_values, var_dtypes = {}, {}
for (name, shape) in var_list:
var_values[name] = numpy.zeros(shape)
for checkpoint in checkpoints:
reader = tf.train.load_checkpoint(checkpoint)
for name in var_values:
tensor = reader.get_tensor(name)
if not isinstance(tensor, numpy.ndarray): # e.g. int (scalar)
tensor = numpy.array(tensor)
assert isinstance(tensor, numpy.ndarray)
var_dtypes[name] = tensor.dtype
if isinstance(tensor.dtype, numpy.integer):
var_values[name] = tensor # just take last
else:
var_values[name] += tensor
tf_compat.v1.logging.info("Read from checkpoint %s", checkpoint)
for name in var_values: # Average.
if not isinstance(var_dtypes[name], numpy.integer):
var_values[name] /= len(checkpoints)
with tf_compat.v1.variable_scope(tf_compat.v1.get_variable_scope(), reuse=tf_compat.v1.AUTO_REUSE):
tf_vars = [tf_compat.v1.get_variable(v, shape=var_values[v].shape, dtype=var_dtypes[v]) for v in var_values]
placeholders = [tf_compat.v1.placeholder(v.dtype, shape=v.shape) for v in tf_vars]
assign_ops = [tf_compat.v1.assign(v, p) for (v, p) in zip(tf_vars, placeholders)]
saver = tf_compat.v1.train.Saver(tf_compat.v1.all_variables())
# Build a model consisting only of variables, set them to the average values.
with tf_compat.v1.Session() as sess:
sess.run(tf_compat.v1.global_variables_initializer())
for p, assign_op, (name, value) in zip(placeholders, assign_ops, var_values.items()):
sess.run(assign_op, {p: value})
# Use the built saver to save the averaged checkpoint.
saver.save(sess, FLAGS.output_path)
tf_compat.v1.logging.info("Averaged checkpoints saved in %s", FLAGS.output_path)
if __name__ == "__main__":
tf_compat.v1.app.run()