-
Notifications
You must be signed in to change notification settings - Fork 5
/
main.cpp
782 lines (658 loc) · 21.3 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
#define CHECK_RESULTS
#define _CRT_SECURE_NO_WARNINGS
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <math.h>
#include <time.h>
#include <vector>
// Probabilities are expressed in fixed point, with kProbBits bits of
// resolution. No need to go overboard with this.
static int const kProbBits = 15;
static uint32_t const kProbMax = 1u << kProbBits;
// Type used for buffers.
typedef std::vector<uint8_t> ByteVec;
// Binary arithmetic encoder (Ilya Muravyov's variant)
// Encodes/decodes a string of binary (0/1) events with
// probabilities that are not 1/2.
//
// This code is written for clarity, not performance.
class BinArithEncoder
{
uint32_t lo, hi;
ByteVec &bytes;
// noncopyable
BinArithEncoder(BinArithEncoder const &);
BinArithEncoder &operator =(BinArithEncoder const &);
public:
// Initialize
explicit BinArithEncoder(ByteVec &target) : lo(0), hi(~0u), bytes(target) { }
// Finish encoding - flushes remaining codeword
~BinArithEncoder()
{
// Find shortest encoding that still decodes to the right symbols.
// The decoder implicitly zero-pads w
uint32_t round_up = 0xffffffu;
while (round_up)
{
if ((lo | round_up) != ~0u)
{
uint32_t rounded = (lo + round_up) & ~round_up;
if (rounded <= hi) // inside interval, we're good!
{
lo = rounded;
break;
}
}
round_up >>= 8;
}
while (lo)
{
bytes.push_back(lo >> 24);
lo <<= 8;
}
}
// Encode a binary symbol "bit" with the probability of a 1 being "prob".
// Note that prob=0 (or prob=1<<kProbBits) really mean that a 1 (or 0,
// respectively) cannot occur!
void encode(int bit, uint32_t prob)
{
// Midpoint of active probability interval subdivided via prob
uint32_t x = lo + ((uint64_t(hi - lo) * prob) >> kProbBits);
if (bit)
hi = x;
else
lo = x + 1;
// Renormalize: when top byte of lo/hi is same, shift it out.
while ((lo ^ hi) < (1u << 24))
{
bytes.push_back(lo >> 24);
lo <<= 8;
hi = (hi << 8) | 0xff;
}
}
};
// Corresponding decoder.
class BinArithDecoder
{
uint32_t code, lo, hi;
ByteVec const &bytes;
size_t read_pos, size;
// noncopyable
BinArithDecoder(BinArithDecoder const &);
BinArithDecoder &operator =(BinArithDecoder const &);
uint8_t getb()
{
if (read_pos < size)
return bytes[read_pos++];
else
return 0;
}
public:
// Start decoding
explicit BinArithDecoder(ByteVec const &source)
: lo(0), hi(~0u), bytes(source), read_pos(0)
{
code = 0;
size = source.size();
for (int i = 0; i < 4; ++i)
code = (code << 8) | getb();
}
// Decode a binary symbol with the probability of a 1 being "prob".
int decode(uint32_t prob)
{
int bit;
// Midpoint of active probability interval subdivided via prob
uint32_t x = lo + ((uint64_t(hi - lo) * prob) >> kProbBits);
if (code <= x)
{
hi = x;
bit = 1;
}
else
{
lo = x + 1;
bit = 0;
}
// Renormalize
while ((lo ^ hi) < (1u << 24))
{
code = (code << 8) | getb();
lo <<= 8;
hi = (hi << 8) | 0xff;
}
return bit;
}
};
// ---- A few basic models
// NOTE: Again, this is written for clarity and ease of tinkering.
// In practice, you will write more direct code for these once you've
// figured out your coding structure.
// Adaptive binary model. These are pretty good!
// Lower Inertia = faster.
//
// You typically build more sophisticated models out of these
// by having lots of them and choosing the active model based on
// context.
template<int Inertia>
struct BinShiftModel
{
uint16_t prob;
BinShiftModel() : prob(kProbMax / 2) {}
void encode(BinArithEncoder &enc, int bit)
{
enc.encode(bit, prob);
adapt(bit);
}
int decode(BinArithDecoder &dec)
{
int bit = dec.decode(prob);
adapt(bit);
return bit;
}
void adapt(int bit)
{
// Note prob never his 0 or kProbMax with this update rule!
if (bit)
prob += (kProbMax - prob) >> Inertia;
else
prob -= prob >> Inertia;
}
};
template<int Inertia0, int Inertia1>
struct TwoBinShiftModel
{
uint16_t p0, p1;
TwoBinShiftModel() : p0(kProbMax / 4), p1(kProbMax / 4) {}
void encode(BinArithEncoder &enc, int bit)
{
enc.encode(bit, p0 + p1);
adapt(bit);
}
int decode(BinArithDecoder &dec)
{
int bit = dec.decode(p0 + p1);
adapt(bit);
return bit;
}
void adapt(int bit)
{
// Note prob never his 0 or kProbMax with this update rule!
if (bit)
{
p0 += (kProbMax/2 - p0) >> Inertia0;
p1 += (kProbMax/2 - p1) >> Inertia1;
}
else
{
p0 -= p0 >> Inertia0;
p1 -= p1 >> Inertia1;
}
}
};
// BitTree model. A tree-shaped cascade of BinShiftModels.
// This is the de-facto standard way to build a multi-symbol coder
// (values with NumBits bits) out of binary models.
//
// LZMA (as in 7zip/xz) uses this type of model (backed by a BinShiftModel
// as above) for its literals.
template<typename BitModel, int NumBits>
struct BitTreeModel
{
static size_t const kNumSyms = 1 << NumBits;
static size_t const kMSB = kNumSyms / 2;
BitModel model[kNumSyms - 1];
void encode(BinArithEncoder &enc, size_t value)
{
assert(value < kNumSyms);
// The first bit sent is the MSB of the value and coded without context
// Second bit is the bit below the MSB, using the value of the MSB as context
// and so forth.
//
// 1 + 2 + 4 + ... = 2^NumBits - 1 contexts.
// Numbering the MSB context 1 and then shifting in the coded bits from the
// bottom is a convenient way to index them. (So ctx is 1-based)
size_t ctx = 1;
while (ctx < kNumSyms)
{
int bit = (value & kMSB) != 0;
value += value; // shift value by 1 for next iter
model[ctx - 1].encode(enc, bit);
ctx += ctx + bit; // shift in "bit" into context
}
}
size_t decode(BinArithDecoder &dec)
{
// Corresponding decoder is nice and easy:
size_t ctx = 1;
while (ctx < kNumSyms)
ctx += ctx + model[ctx - 1].decode(dec);
return ctx - kNumSyms;
}
};
// Unsigned exponential Golomb-style model.
template<typename MagModel>
struct UExpGolombModel
{
static size_t const kMaxTop = 7;
BitTreeModel<MagModel, 5> mag;
MagModel top[kMaxTop + 1];
void encode(BinArithEncoder &enc, uint32_t value)
{
++value; // we code non-negative values
// determine magnitude (position of highest 1 bit)
// and send it in unary.
// bitscan is the better way to do this.
uint32_t m = 0;
while (value >= (2u << m))
++m;
mag.encode(enc, m);
// send remaining bits flat, MSB->LSB
uint32_t mask = m ? 1u << (m - 1) : 0;
if (mask)
{
uint32_t mtop = (m < kMaxTop) ? m : kMaxTop;
top[mtop].encode(enc, (value & mask) != 0);
mask >>= 1;
while (mask)
{
uint32_t bit = (value & mask) != 0;
enc.encode(bit, kProbMax / 2);
mask >>= 1;
}
}
}
uint32_t decode(BinArithDecoder &dec)
{
// decode magnitude code
uint32_t m = (uint32_t) mag.decode(dec);
// decode value bits
uint32_t v = 1;
if (m)
{
uint32_t mtop = (m < kMaxTop) ? m : kMaxTop;
v += v + top[mtop].decode(dec);
for (uint32_t i = 1; i < m; ++i)
v += v + dec.decode(kProbMax / 2);
}
return v - 1;
}
};
// Signed exponential Golomb-style model.
template<typename MagModel, typename SignModel>
struct SExpGolombModel
{
UExpGolombModel<MagModel> abs_coder;
SignModel sign[2];
void encode(BinArithEncoder &enc, int32_t value, bool sign_pred)
{
uint32_t absv = (value < 0) ? -value : value;
abs_coder.encode(enc, absv);
if (absv)
sign[sign_pred].encode(enc, value < 0);
}
int32_t decode(BinArithDecoder &dec, bool sign_pred)
{
int32_t v = abs_coder.decode(dec);
if (v)
{
if (sign[sign_pred].decode(dec))
v = -v;
}
return v;
}
};
// ---- Data format
static const int kNumCubes = 901;
static const int kRefDist = 6; // distance to reference frame
static const int kFrameRate = 60; // just used to calc kbps
struct CubeState
{
int orientation_largest;
int orientation[3];
int position[3];
int interacting;
};
// Prediction state. Not sent in the stream; inferred from the data
// sent to aid coding.
struct PredState
{
int changing;
int orient_delta[3];
int vel[3];
};
struct ModelSet
{
static const int kNumMagCtx = 10;
typedef TwoBinShiftModel<3, 7> DefaultBit;
typedef SExpGolombModel<DefaultBit, DefaultBit> SExpGolomb;
DefaultBit orientation_different[4]; // [refp.changing + 2*close_to_cube0]
BitTreeModel<DefaultBit, 2> orientation_largest[4*4]; // [orient_context]
SExpGolomb orientation_delta[kNumMagCtx + 1]; // [mag_ctx]
DefaultBit orientation_signflip[2]; // [second_largest_sign]
DefaultBit pos_different[8]; // [orientation_differs + 2*orient_diff_ctx]
SExpGolomb pos_delta[kNumMagCtx]; // [mag_ctx]
DefaultBit interacting[4]; // [ref.interacting + 2*any_diff]
};
struct Frame
{
Frame();
CubeState cubes[kNumCubes];
ModelSet models; // coding state
PredState pred[kNumCubes]; // prediction state
};
Frame::Frame()
{
memset(cubes, 0, sizeof(cubes));
memset(pred, 0, sizeof(pred));
}
static int xyzw_from_abc(int abc_ind, int largest)
{
return abc_ind + (abc_ind >= largest);
}
static int abc_from_xyzw(int xyzw_ind, int largest)
{
assert(xyzw_ind != largest);
return xyzw_ind - (xyzw_ind >= largest);
}
static int orient_context(CubeState const *cube)
{
// Largest axis is elided. Find index and magnitude of second-largest.
int v[3];
for (int i = 0; i < 3; ++i)
v[i] = abs(cube->orientation[i] - 256);
int abc_ind;
if (v[0] >= v[1])
abc_ind = (v[0] >= v[2]) ? 0 : 2;
else
abc_ind = (v[1] >= v[2]) ? 1 : 2;
int ctx = cube->orientation_largest;
if (v[abc_ind] >= 128) // second-largest axis is getting closer to cross-over
ctx += 4 * (abc_ind + 1);
return ctx;
}
static int mag_context(int dv)
{
int v = abs(dv);
int ctx = 0;
while (v > 1 && ctx < ModelSet::kNumMagCtx - 1)
{
++ctx;
v /= 2;
}
return ctx;
}
static int orient_newmag_context(int axis, int old_largest, PredState const *refp, bool *sign_bit, bool flipped)
{
if (axis != old_largest)
{
int old_ind = abc_from_xyzw(axis, old_largest);
*sign_bit = (refp->orient_delta[old_ind] < 0) ^ flipped;
return mag_context(refp->orient_delta[old_ind]);
}
else
{
*sign_bit = flipped;
return ModelSet::kNumMagCtx;
}
}
static void unpack_quat_prediction(int dest[4], int const src[3], int largest)
{
for (int i = 0; i < 3; ++i)
dest[xyzw_from_abc(i, largest)] = src[i];
dest[largest] = 450;
}
static bool are_close(CubeState const *a, CubeState const *b)
{
for (int i = 0; i < 3; i++)
if (abs(a->position[i] - b->position[i]) >= 2048)
return false;
return true;
}
static void encode_frame(ByteVec &dest, Frame *cur, Frame const *ref)
{
BinArithEncoder coder(dest);
ModelSet &m = cur->models;
// Start with ref frame models
m = ref->models;
for (int cube_id = 0; cube_id < kNumCubes; ++cube_id)
{
CubeState *cube = &cur->cubes[cube_id];
PredState *pred = &cur->pred[cube_id];
CubeState const *refc = &ref->cubes[cube_id];
PredState const *refp = &ref->pred[cube_id];
int diff_orient = (cube->orientation_largest != refc->orientation_largest), diff_pos = 0;
for (int i = 0; i < 3; ++i)
{
pred->orient_delta[i] = cube->orientation[i] - refc->orientation[i];
pred->vel[i] = cube->position[i] - refc->position[i];
diff_orient |= pred->orient_delta[i];
diff_pos |= pred->vel[i];
}
int orient_diff_ctx = refp->changing;
if (are_close(refc, &ref->cubes[0]))
orient_diff_ctx |= 2;
m.orientation_different[orient_diff_ctx].encode(coder, diff_orient);
if (diff_orient)
{
int orient_ctx = orient_context(refc);
m.orientation_largest[orient_ctx].encode(coder, cube->orientation_largest);
if (cube->orientation_largest == refc->orientation_largest)
{
for (int i = 0; i < 3; ++i)
{
int ctx = mag_context(refp->orient_delta[i]);
m.orientation_delta[ctx].encode(coder, pred->orient_delta[i], refp->orient_delta[i] < 0);
}
}
else
{
int old_largest = refc->orientation_largest;
int new_largest = cube->orientation_largest;
int old[4];
bool flipped = false;
unpack_quat_prediction(old, refc->orientation, old_largest);
int sign_context = old[new_largest] < 256;
if (cube->orientation[abc_from_xyzw(old_largest, new_largest)] < 256)
{
flipped = true;
m.orientation_signflip[sign_context].encode(coder, 1);
for (int i = 0; i < 4; ++i)
old[i] = 512 - old[i];
}
else
m.orientation_signflip[sign_context].encode(coder, 0);
for (int i = 0; i < 3; ++i)
{
int axis = xyzw_from_abc(i, new_largest);
bool sign_bit;
int ctx = orient_newmag_context(axis, old_largest, refp, &sign_bit, flipped);
m.orientation_delta[ctx].encode(coder, cube->orientation[i] - old[axis], sign_bit);
}
}
}
m.pos_different[(diff_orient != 0) + orient_diff_ctx*2].encode(coder, diff_pos != 0);
if (diff_pos)
{
for (int i = 0; i < 3; ++i)
{
int ctx = mag_context(refp->vel[i]);
m.pos_delta[ctx].encode(coder, pred->vel[i] - refp->vel[i], refp->vel[i] < 0);
}
}
m.interacting[refc->interacting + ((diff_orient | diff_pos) ? 2 : 0)].encode(coder, cube->interacting);
// NOTE: in general, we would need to account for variable frame
// spacing here. But in this testbed we always predict from 6 frames
// ago, so no problem.
pred->changing = (diff_orient | diff_pos) != 0;
}
}
static void decode_frame(ByteVec const &src, Frame *cur, Frame const *ref)
{
BinArithDecoder coder(src);
ModelSet &m = cur->models;
// Start with ref frame models
m = ref->models;
for (int cube_id = 0; cube_id < kNumCubes; ++cube_id)
{
CubeState *cube = &cur->cubes[cube_id];
PredState *pred = &cur->pred[cube_id];
CubeState const *refc = &ref->cubes[cube_id];
PredState const *refp = &ref->pred[cube_id];
bool diff_orient = false;
int orient_diff_ctx = refp->changing;
if (are_close(refc, &ref->cubes[0]))
orient_diff_ctx |= 2;
if (m.orientation_different[orient_diff_ctx].decode(coder))
{
diff_orient = true;
int orient_ctx = orient_context(refc);
cube->orientation_largest = (int) m.orientation_largest[orient_ctx].decode(coder);
if (cube->orientation_largest == refc->orientation_largest)
{
for (int i = 0; i < 3; ++i)
{
int ctx = mag_context(refp->orient_delta[i]);
cube->orientation[i] = refc->orientation[i] + m.orientation_delta[ctx].decode(coder, refp->orient_delta[i] < 0);
}
}
else
{
int old_largest = refc->orientation_largest;
int new_largest = cube->orientation_largest;
int old[4];
unpack_quat_prediction(old, refc->orientation, old_largest);
bool flipped = false;
if (m.orientation_signflip[old[new_largest] < 256].decode(coder))
{
flipped = true;
for (int i = 0; i < 4; ++i)
old[i] = 512 - old[i];
}
for (int i = 0; i < 3; ++i)
{
int axis = xyzw_from_abc(i, new_largest);
bool sign_bit;
int ctx = orient_newmag_context(axis, old_largest, refp, &sign_bit, flipped);
cube->orientation[i] = m.orientation_delta[ctx].decode(coder, sign_bit) + old[axis];
}
}
}
else
{
cube->orientation_largest = refc->orientation_largest;
for (int i = 0; i < 3; ++i)
cube->orientation[i] = refc->orientation[i];
}
for (int i = 0; i < 3; ++i)
{
pred->orient_delta[i] = cube->orientation[i] - refc->orientation[i];
pred->vel[i] = 0;
}
bool diff_pos = false;
if (m.pos_different[diff_orient + orient_diff_ctx*2].decode(coder))
{
diff_pos = true;
for (int i = 0; i < 3; ++i)
{
int ctx = mag_context(refp->vel[i]);
pred->vel[i] = refp->vel[i] + m.pos_delta[ctx].decode(coder, refp->vel[i] < 0);
}
}
for (int i = 0; i < 3; ++i)
cube->position[i] = refc->position[i] + pred->vel[i];
cube->interacting = m.interacting[refc->interacting + ((diff_orient | diff_pos) ? 2 : 0)].decode(coder);
pred->changing = (int(diff_orient) | int(diff_pos)) != 0;
}
}
// ---- I/O and main
static Frame *read_data(char const *filename, int &num_frames, Frame *initial)
{
FILE *f = fopen(filename, "rb");
if (!f)
{
printf("data missing!\n");
exit(1);
}
fseek(f, 0, SEEK_END);
num_frames = ftell(f) / (kNumCubes * sizeof(CubeState)) - 1;
fseek(f, 0, SEEK_SET);
Frame *frames = new Frame[num_frames];
// read initial frame cubes
if (fread(initial->cubes, sizeof(CubeState), kNumCubes, f) != kNumCubes)
{
printf("error reading initial frame!\n");
exit(1);
}
for (int frame = 0; frame < num_frames; ++frame)
{
if (fread(frames[frame].cubes, sizeof(CubeState), kNumCubes, f) != kNumCubes)
{
printf("error reading frame %d!\n", frame);
exit(1);
}
}
fclose(f);
return frames;
}
static void write_data(char const *filename, Frame *frames, int num_frames, Frame const *initial)
{
FILE *f = fopen(filename, "wb");
if (!f)
{
printf("error writing output!\n");
exit(1);
}
fwrite(initial->cubes, sizeof(CubeState), kNumCubes, f);
for (int frame = 0; frame < num_frames; ++frame)
fwrite(frames[frame].cubes, sizeof(CubeState), kNumCubes, f);
fclose(f);
}
int main()
{
Frame initial_frame;
// Read the data
printf("reading...\n");
int num_frames;
Frame *frames = read_data("delta_data_realnew.bin", num_frames, &initial_frame);
printf("done.\n");
// Coding loop
ByteVec packet_buf;
size_t packet_size_sum = 0;
size_t packet_count = 0;
Frame out;
clock_t enc_start = clock();
// Gaffer says skip the first 6 frames. Okay.
for (int frame = 6; frame < num_frames; ++frame)
{
Frame *cur = &frames[frame];
Frame *ref = (frame >= kRefDist) ? &frames[frame - kRefDist] : &initial_frame;
packet_buf.clear();
encode_frame(packet_buf, cur, ref);
decode_frame(packet_buf, &out, ref);
#ifdef CHECK_RESULTS
if (memcmp(out.cubes, cur->cubes, sizeof(out.cubes)) != 0)
{
printf("decode mismatch on frame %d\n", frame);
return 1;
}
#endif
packet_size_sum += packet_buf.size();
++packet_count;
}
double enc_time = double(clock() - enc_start) / CLOCKS_PER_SEC;
printf("processing took %.2fs (%.2fus/frame)\n", enc_time, 1e6*enc_time / (double)packet_count);
printf("total packed size %d\n", (int)packet_size_sum);
double bytes_per_frame = (double)packet_size_sum / (double)packet_count;
double kbps = bytes_per_frame * kFrameRate * 8.0 / 1000.0;
printf("%.2f bytes/frame\n", bytes_per_frame);
printf("%.2f kbps\n", kbps);
// Write output
write_data("output.bin", frames, num_frames, &initial_frame);
// Clean up
delete[] frames;
return 0;
}
// vim:et:sts=4:sw=4