forked from syang1993/gst-tacotron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hparams.py
59 lines (48 loc) · 1.61 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import tensorflow as tf
# Default hyperparameters:
hparams = tf.contrib.training.HParams(
# Comma-separated list of cleaners to run on text prior to training and eval. For non-English
# text, you may want to use "basic_cleaners" or "transliteration_cleaners" See TRAINING_DATA.md.
cleaners='english_cleaners',
# Audio:
num_mels=80,
num_freq=1025,
sample_rate=16000,
frame_length_ms=50,
frame_shift_ms=12.5,
preemphasis=0.97,
min_level_db=-100,
ref_level_db=20,
# Model:
outputs_per_step=2,
embed_depth=256,
prenet_depths=[256, 128],
encoder_depth=256,
rnn_depth=256,
# Attention
attention_depth=256,
# Training:
batch_size=32,
adam_beta1=0.9,
adam_beta2=0.999,
initial_learning_rate=0.002,
decay_learning_rate=True,
use_cmudict=False, # Use CMUDict during training to learn pronunciation of ARPAbet phonemes
# Eval:
max_iters=1000,
griffin_lim_iters=60,
power=1.5, # Power to raise magnitudes to prior to Griffin-Lim
#Global style token
use_gst=True, # When false, the scripit will do as the paper "Towards End-to-End Prosody Transfer for Expressive Speech Synthesis with Tacotron"
num_gst=10,
num_heads=4, # Head number for multi-head attention
style_embed_depth=256,
reference_filters=[32, 32, 64, 64, 128, 128],
reference_depth=128,
style_att_type="mlp_attention", # Attention type for style attention module (dot_attention, mlp_attention)
style_att_dim=128,
)
def hparams_debug_string():
values = hparams.values()
hp = [' %s: %s' % (name, values[name]) for name in sorted(values)]
return 'Hyperparameters:\n' + '\n'.join(hp)