-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_local__preprocess.py
72 lines (59 loc) · 1.88 KB
/
run_local__preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
"""
python ./fids_capstone_asl_translation__dataflow__main.py \
--work-dir gs://<YOUR-BUCKET-ID> \
--max-target-videos <-1 for ALL | n max videos to process> \
--beam-gcp-project YOUR-PROJECT \
--beam-gcp-region us-central1 \
--dataflow-job-name fids-capston-asl-translation-$USER
"""
from __future__ import absolute_import
import argparse
import logging
import os
from api import preprocessor
if __name__ == '__main__':
# logging.getLogger().setLevel(logging.INFO) # too much output!
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--work-dir',
required=True,
help='Directory for staging and working files. '
'This can be a Google Cloud Storage path.'
)
parser.add_argument(
'--max-target-videos',
type=int,
default=-1,
help='Maximum number of target videos to process. '
'Set to -1 to download/process all available target videos (and segments).'
)
parser.add_argument(
'--beam-gcp-project',
default=None,
help='The GCP project containing the GCS bucket to use for beam temp as well as data storage.'
)
parser.add_argument(
'--beam-gcp-region',
default=None,
help='The GCP region of the bucket.'
)
parser.add_argument(
'--beam-gcp-dataflow-job-name',
default=None,
help='The name of the GCP Dataflow job to create.'
)
parser.add_argument(
'--beam-gcp-dataflow-setup-file',
default=None,
help='The path to the setup.py file (used by Apache Beam worker nodes).'
)
args = parser.parse_args()
print(f"args: {args}")
preprocessor.run(
work_dir=args.work_dir,
beam_runner='DirectRunner',
beam_gcp_project=args.beam_gcp_project,
beam_gcp_region=args.beam_gcp_region,
beam_gcp_dataflow_job_name=args.beam_gcp_dataflow_job_name,
beam_gcp_dataflow_setup_file=args.beam_gcp_dataflow_setup_file
)