-
Notifications
You must be signed in to change notification settings - Fork 16
/
maxent.h
377 lines (347 loc) · 10.2 KB
/
maxent.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
/*
* $Id: maxent.h,v 1.24 2006/08/21 17:30:38 tsuruoka Exp $
*/
#ifndef __MAXENT_H_
#define __MAXENT_H_
#include <string>
#include <vector>
#include <list>
#include <map>
#include <algorithm>
#include <iostream>
#include <string>
#include <cassert>
//#include "blmvm.h"
#define USE_HASH_MAP // if you encounter errors with hash, try commenting out this line. (the program will be a bit slower, though)
#ifdef USE_HASH_MAP
#include <ext/hash_map>
#endif
//
// data format for each sample for training/testing
//
struct ME_Sample
{
public:
ME_Sample() : label("") {};
ME_Sample(const std::string & l) : label(l) {};
void set_label(const std::string & l) { label = l; }
// to add a binary feature
void add_feature(const std::string & f) {
features.push_back(f);
}
// to add a real-valued feature
void add_feature(const std::string & s, const double d) {
rvfeatures.push_back(std::pair<std::string, double>(s, d));
}
public:
std::string label;
std::vector<std::string> features;
std::vector<std::pair<std::string, double> > rvfeatures;
// obsolete
void add_feature(const std::pair<std::string, double> & f) {
rvfeatures.push_back(f); // real-valued features
}
};
//
// for those who want to use load_from_array()
//
typedef struct ME_Model_Data
{
char * label;
char * feature;
double weight;
} ME_Model_Data;
class ME_Model
{
public:
void add_training_sample(const ME_Sample & s);
int train(const int cutoff = 0, const double sigma = 0, const double widthfactor = 0);
std::vector<double> classify(ME_Sample & s) const;
bool load_from_file(const std::string & filename);
bool save_to_file(const std::string & filename) const;
int num_classes() const { return _num_classes; }
std::string get_class_label(int i) const { return _label_bag.Str(i); }
int get_class_id(const std::string & s) const { return _label_bag.Id(s); }
void get_features(std::list< std::pair< std::pair<std::string, std::string>, double> > & fl);
void set_heldout(const int h, const int n = 0) { _nheldout = h; _early_stopping_n = n; };
bool load_from_array(const ME_Model_Data data[]);
void set_reference_model(const ME_Model & ref_model) { _ref_modelp = &ref_model; };
ME_Model() {
_nheldout = 0;
_early_stopping_n = 0;
_ref_modelp = NULL;
}
public:
// obsolete. just for downward compatibility
int train(const std::vector<ME_Sample> & train,
const int cutoff = 0, const double sigma = 0, const double widthfactor = 0);
private:
struct Sample {
int label;
std::vector<int> positive_features;
std::vector<std::pair<int, double> > rvfeatures;
std::vector<double> ref_pd; // reference probability distribution
bool operator<(const Sample & x) const {
for (int i = 0; i < positive_features.size(); i++) {
if (i >= x.positive_features.size()) return false;
int v0 = positive_features[i];
int v1 = x.positive_features[i];
if (v0 < v1) return true;
if (v0 > v1) return false;
}
return false;
}
};
struct ME_Feature
{
enum { MAX_LABEL_TYPES = 255 };
// ME_Feature(const int l, const int f) : _body((l << 24) + f) {
// assert(l >= 0 && l < 256);
// assert(f >= 0 && f <= 0xffffff);
// };
// int label() const { return _body >> 24; }
// int feature() const { return _body & 0xffffff; }
ME_Feature(const int l, const int f) : _body((f << 8) + l) {
assert(l >= 0 && l <= MAX_LABEL_TYPES);
assert(f >= 0 && f <= 0xffffff);
};
int label() const { return _body & 0xff; }
int feature() const { return _body >> 8; }
unsigned int body() const { return _body; }
private:
unsigned int _body;
};
struct ME_FeatureBag
{
#ifdef USE_HASH_MAP
typedef __gnu_cxx::hash_map<unsigned int, int> map_type;
#else
typedef std::map<unsigned int, int> map_type;
#endif
map_type mef2id;
std::vector<ME_Feature> id2mef;
int Put(const ME_Feature & i) {
map_type::const_iterator j = mef2id.find(i.body());
if (j == mef2id.end()) {
int id = id2mef.size();
id2mef.push_back(i);
mef2id[i.body()] = id;
return id;
}
return j->second;
}
int Id(const ME_Feature & i) const {
map_type::const_iterator j = mef2id.find(i.body());
if (j == mef2id.end()) {
return -1;
}
return j->second;
}
ME_Feature Feature(int id) const {
assert(id >= 0 && id < (int)id2mef.size());
return id2mef[id];
}
int Size() const {
return id2mef.size();
}
void Clear() {
mef2id.clear();
id2mef.clear();
}
};
struct hashfun_str
{
size_t operator()(const std::string& s) const {
assert(sizeof(int) == 4 && sizeof(char) == 1);
const int* p = reinterpret_cast<const int*>(s.c_str());
size_t v = 0;
int n = s.size() / 4;
for (int i = 0; i < n; i++, p++) {
// v ^= *p;
v ^= *p << (4 * (i % 2)); // note) 0 <= char < 128
}
int m = s.size() % 4;
for (int i = 0; i < m; i++) {
v ^= s[4 * n + i] << (i * 8);
}
return v;
}
};
struct MiniStringBag
{
#ifdef USE_HASH_MAP
typedef __gnu_cxx::hash_map<std::string, int, hashfun_str> map_type;
#else
typedef std::map<std::string, int> map_type;
#endif
int _size;
map_type str2id;
MiniStringBag() : _size(0) {}
int Put(const std::string & i) {
map_type::const_iterator j = str2id.find(i);
if (j == str2id.end()) {
int id = _size;
_size++;
str2id[i] = id;
return id;
}
return j->second;
}
int Id(const std::string & i) const {
map_type::const_iterator j = str2id.find(i);
if (j == str2id.end()) return -1;
return j->second;
}
int Size() const { return _size; }
void Clear() { str2id.clear(); _size = 0; }
map_type::const_iterator begin() const { return str2id.begin(); }
map_type::const_iterator end() const { return str2id.end(); }
};
struct StringBag : public MiniStringBag
{
std::vector<std::string> id2str;
int Put(const std::string & i) {
map_type::const_iterator j = str2id.find(i);
if (j == str2id.end()) {
int id = id2str.size();
id2str.push_back(i);
str2id[i] = id;
return id;
}
return j->second;
}
std::string Str(const int id) const {
assert(id >= 0 && id < (int)id2str.size());
return id2str[id];
}
int Size() const { return id2str.size(); }
void Clear() {
str2id.clear();
id2str.clear();
}
};
std::vector<Sample> _vs; // vector of training_samples
StringBag _label_bag;
MiniStringBag _featurename_bag;
double _sigma; // Gaussian prior
double _inequality_width;
std::vector<double> _vl; // vector of lambda
std::vector<double> _va; // vector of alpha (for inequality ME)
std::vector<double> _vb; // vector of beta (for inequality ME)
ME_FeatureBag _fb;
int _num_classes;
std::vector<double> _vee; // empirical expectation
std::vector<double> _vme; // empirical expectation
std::vector< std::vector< int > > _feature2mef;
std::vector< Sample > _heldout;
double _train_error; // current error rate on the training data
double _heldout_error; // current error rate on the heldout data
int _nheldout;
int _early_stopping_n;
std::vector<double> _vhlogl;
const ME_Model * _ref_modelp;
double heldout_likelihood();
int conditional_probability(const Sample & nbs, std::vector<double> & membp) const;
int make_feature_bag(const int cutoff);
int classify(const Sample & nbs, std::vector<double> & membp) const;
double update_model_expectation();
int perform_LMVM();
int perform_GIS(int C);
void set_ref_dist(Sample & s) const;
void init_feature2mef();
// BLMVM
/*
int BLMVMComputeFunctionGradient(BLMVM blmvm, BLMVMVec X,double *f,BLMVMVec G);
int BLMVMComputeBounds(BLMVM blmvm, BLMVMVec XL, BLMVMVec XU);
int BLMVMSolve(double *x, int n);
int BLMVMFunctionGradient(double *x, double *f, double *g, int n);
int BLMVMLowerAndUpperBounds(double *xl,double *xu,int n);
int Solve_BLMVM(BLMVM blmvm, BLMVMVec X);
*/
};
#endif
/*
* $Log: maxent.h,v $
* Revision 1.24 2006/08/21 17:30:38 tsuruoka
* use MAX_LABEL_TYPES
*
* Revision 1.23 2006/07/25 13:19:53 tsuruoka
* sort _vs[]
*
* Revision 1.22 2006/07/18 11:13:15 tsuruoka
* modify comments
*
* Revision 1.21 2006/07/18 10:02:15 tsuruoka
* remove sample2feature[]
* speed up conditional_probability()
*
* Revision 1.20 2006/07/18 05:10:51 tsuruoka
* add ref_dist
*
* Revision 1.19 2005/12/23 10:33:02 tsuruoka
* support real-valued features
*
* Revision 1.18 2005/12/23 09:15:29 tsuruoka
* modify _train to reduce memory consumption
*
* Revision 1.17 2005/10/28 13:02:34 tsuruoka
* set_heldout(): add default value
* Feature()
*
* Revision 1.16 2005/09/12 13:51:16 tsuruoka
* Sample: list -> vector
*
* Revision 1.15 2005/09/12 13:27:10 tsuruoka
* add add_training_sample()
*
* Revision 1.14 2005/04/27 11:22:27 tsuruoka
* bugfix
* ME_Sample: list -> vector
*
* Revision 1.13 2005/04/27 10:20:19 tsuruoka
* MiniStringBag -> StringBag
*
* Revision 1.12 2005/04/27 10:00:42 tsuruoka
* remove tmpfb
*
* Revision 1.11 2005/04/26 14:25:53 tsuruoka
* add MiniStringBag, USE_HASH_MAP
*
* Revision 1.10 2004/10/04 05:50:25 tsuruoka
* add Clear()
*
* Revision 1.9 2004/08/09 12:27:21 tsuruoka
* change messages
*
* Revision 1.8 2004/08/04 13:55:19 tsuruoka
* modify _sample2feature
*
* Revision 1.7 2004/07/29 05:51:13 tsuruoka
* remove modeldata.h
*
* Revision 1.6 2004/07/28 13:42:58 tsuruoka
* add AGIS
*
* Revision 1.5 2004/07/28 05:54:14 tsuruoka
* get_class_name() -> get_class_label()
* ME_Feature: bugfix
*
* Revision 1.4 2004/07/27 16:58:47 tsuruoka
* modify the interface of classify()
*
* Revision 1.3 2004/07/26 17:23:46 tsuruoka
* _sample2feature: list -> vector
*
* Revision 1.2 2004/07/26 15:49:23 tsuruoka
* modify ME_Feature
*
* Revision 1.1 2004/07/26 13:10:55 tsuruoka
* add files
*
* Revision 1.18 2004/07/22 08:34:45 tsuruoka
* modify _sample2feature[]
*
* Revision 1.17 2004/07/21 16:33:01 tsuruoka
* remove some comments
*
*/