forked from huggingface/pytorch-image-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bulk_runner.py
executable file
·184 lines (157 loc) · 6.37 KB
/
bulk_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python3
""" Bulk Model Script Runner
Run validation or benchmark script in separate process for each model
Benchmark all 'vit*' models:
python bulk_runner.py --model-list 'vit*' --results-file vit_bench.csv benchmark.py --amp -b 512
Validate all models:
python bulk_runner.py --model-list all --results-file val.csv --pretrained validate.py /imagenet/validation/ --amp -b 512 --retry
Hacked together by Ross Wightman (https://github.com/rwightman)
"""
import argparse
import os
import sys
import csv
import json
import subprocess
import time
from typing import Callable, List, Tuple, Union
from timm.models import is_model, list_models
parser = argparse.ArgumentParser(description='Per-model process launcher')
# model and results args
parser.add_argument(
'--model-list', metavar='NAME', default='',
help='txt file based list of model names to benchmark')
parser.add_argument(
'--results-file', default='', type=str, metavar='FILENAME',
help='Output csv file for validation results (summary)')
parser.add_argument(
'--sort-key', default='', type=str, metavar='COL',
help='Specify sort key for results csv')
parser.add_argument(
"--pretrained", action='store_true',
help="only run models with pretrained weights")
parser.add_argument(
"--delay",
type=float,
default=0,
help="Interval, in seconds, to delay between model invocations.",
)
parser.add_argument(
"--start_method", type=str, default="spawn", choices=["spawn", "fork", "forkserver"],
help="Multiprocessing start method to use when creating workers.",
)
parser.add_argument(
"--no_python",
help="Skip prepending the script with 'python' - just execute it directly. Useful "
"when the script is not a Python script.",
)
parser.add_argument(
"-m",
"--module",
help="Change each process to interpret the launch script as a Python module, executing "
"with the same behavior as 'python -m'.",
)
# positional
parser.add_argument(
"script", type=str,
help="Full path to the program/script to be launched for each model config.",
)
parser.add_argument("script_args", nargs=argparse.REMAINDER)
def cmd_from_args(args) -> Tuple[Union[Callable, str], List[str]]:
# If ``args`` not passed, defaults to ``sys.argv[:1]``
with_python = not args.no_python
cmd: Union[Callable, str]
cmd_args = []
if with_python:
cmd = os.getenv("PYTHON_EXEC", sys.executable)
cmd_args.append("-u")
if args.module:
cmd_args.append("-m")
cmd_args.append(args.script)
else:
if args.module:
raise ValueError(
"Don't use both the '--no_python' flag"
" and the '--module' flag at the same time."
)
cmd = args.script
cmd_args.extend(args.script_args)
return cmd, cmd_args
def main():
args = parser.parse_args()
cmd, cmd_args = cmd_from_args(args)
model_cfgs = []
model_names = []
if args.model_list == 'all':
# NOTE should make this config, for validation / benchmark runs the focus is 1k models,
# so we filter out 21/22k and some other unusable heads. This will change in the future...
exclude_model_filters = ['*in21k', '*in22k', '*dino', '*_22k']
model_names = list_models(
pretrained=args.pretrained, # only include models w/ pretrained checkpoints if set
exclude_filters=exclude_model_filters
)
model_cfgs = [(n, None) for n in model_names]
elif not is_model(args.model_list):
# model name doesn't exist, try as wildcard filter
model_names = list_models(args.model_list)
model_cfgs = [(n, None) for n in model_names]
if not model_cfgs and os.path.exists(args.model_list):
with open(args.model_list) as f:
model_names = [line.rstrip() for line in f]
model_cfgs = [(n, None) for n in model_names]
if len(model_cfgs):
results_file = args.results_file or './results.csv'
results = []
errors = []
print('Running script on these models: {}'.format(', '.join(model_names)))
if not args.sort_key:
if 'benchmark' in args.script:
if any(['train' in a for a in args.script_args]):
sort_key = 'train_samples_per_sec'
else:
sort_key = 'infer_samples_per_sec'
else:
sort_key = 'top1'
else:
sort_key = args.sort_key
print(f'Script: {args.script}, Args: {args.script_args}, Sort key: {sort_key}')
try:
for m, _ in model_cfgs:
if not m:
continue
args_str = (cmd, *[str(e) for e in cmd_args], '--model', m)
try:
o = subprocess.check_output(args=args_str).decode('utf-8').split('--result')[-1]
r = json.loads(o)
results.append(r)
except Exception as e:
# FIXME batch_size retry loop is currently done in either validation.py or benchmark.py
# for further robustness (but more overhead), we may want to manage that by looping here...
errors.append(dict(model=m, error=str(e)))
if args.delay:
time.sleep(args.delay)
except KeyboardInterrupt as e:
pass
errors.extend(list(filter(lambda x: 'error' in x, results)))
if errors:
print(f'{len(errors)} models had errors during run.')
for e in errors:
print(f"\t {e['model']} ({e.get('error', 'Unknown')})")
results = list(filter(lambda x: 'error' not in x, results))
no_sortkey = list(filter(lambda x: sort_key not in x, results))
if no_sortkey:
print(f'{len(no_sortkey)} results missing sort key, skipping sort.')
else:
results = sorted(results, key=lambda x: x[sort_key], reverse=True)
if len(results):
print(f'{len(results)} models run successfully. Saving results to {results_file}.')
write_results(results_file, results)
def write_results(results_file, results):
with open(results_file, mode='w') as cf:
dw = csv.DictWriter(cf, fieldnames=results[0].keys())
dw.writeheader()
for r in results:
dw.writerow(r)
cf.flush()
if __name__ == '__main__':
main()