-
Notifications
You must be signed in to change notification settings - Fork 0
/
agent.py
188 lines (153 loc) · 7.84 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import numpy as np
import random
from collections import namedtuple, deque
from model import QNetwork
import torch
from torch import optim
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Agent:
def __init__(self, state_size, action_size, seed,
fc1_size=64, fc2_size=64,
checkpoint_filename=''):
"""
Initializes an agent object
TODO make the structure of the qfunction approximator more flexible
:param state_size: dimension of each state
:param action_size: dimension of each action
:param seed: random seed
:param fc1_size: number of units of the first fully connected layer of the q function approximator
:param fc2_size: number of units of the second fully connected layer of the q function approximator
:param checkpoint_filename: name of the checkpoint file which contains the load_state_dict pickled
weights of the q function approximator.
:return agent: initialized agent
"""
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(seed)
self.fc1_size = fc1_size
self.fc2_size = fc2_size
self.BUFFER_SIZE = int(1e5) # replay buffer size
self.BATCH_SIZE = 64 # minibatch size
self.GAMMA = 0.99 # discount factor
self.TAU = 1e-3 # for soft update of target parameters
self.LR = 5e-4 # learning rate
self.UPDATE_EVERY = 4 # how often to update the network
# Q-Network
self.qnetwork_local = QNetwork(state_size, action_size, seed, fc1_size, fc2_size).to(device)
self.qnetwork_target = QNetwork(state_size, action_size, seed, fc1_size, fc2_size).to(device)
self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=self.LR)
self.criterion = torch.nn.MSELoss()
# Replay memory
self.memory = ReplayBuffer(action_size, self.BUFFER_SIZE, self.BATCH_SIZE, seed)
# Initialize time step (for updating every UPDATE_EVERY steps)
self.t_step = 0
if checkpoint_filename != '':
self.qnetwork_local.load_state_dict(torch.load(checkpoint_filename))
def step(self, state, action, reward, next_state, done):
# Save experience in replay memory
self.memory.add(state, action, reward, next_state, done)
# Learn every UPDATE_EVERY time steps.
self.t_step = (self.t_step + 1) % self.UPDATE_EVERY
if self.t_step == 0:
# If enough samples are available in memory, get random subset and learn
if len(self.memory) > self.BATCH_SIZE:
experiences = self.memory.sample()
self.learn(experiences, self.GAMMA)
def act(self, state, eps=0.):
"""
Returns actions for given state as per current policy
"""
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
self.qnetwork_local.eval()
with torch.no_grad():
action_values = self.qnetwork_local(state)
self.qnetwork_local.train()
# Epsilon-greedy action selection
if random.random() > eps:
return np.argmax(action_values.cpu().data.numpy())
else:
return random.choice(np.arange(self.action_size))
def learn(self, experiences, gamma):
"""
Update value parameters using given batch of experience tuples.
:param experiences: (Tuple[torch.Variable]) tuple of (s, a, r, s', done) tuples
:param gamma: (float) discount factor
"""
y = self._q_target(experiences, gamma)
y_pred = self._q_estimated(experiences, gamma)
loss = self.criterion(y_pred, y)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# ------------------- update target network ------------------- #
self.soft_update(self.qnetwork_local, self.qnetwork_target, self.TAU)
def soft_update(self, local_model, target_model, tau):
"""
Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
:param local_model: (PyTorch model) weights will be copied from
:param target_model: (PyTorch model) weights will be copied to
:param tau: interpolation parameter
:return:
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
def _q_target(self, experiences, gamma):
"""Method that calculates the target q value used for training"""
raise NotImplementedError
def _q_estimated(self, experiences, gamma):
"""Method that calculates the estimated q value used for training"""
states, actions, rewards, next_states, dones = experiences
# feedforward the local network
return self.qnetwork_local(states).gather(1, actions)
class DQN(Agent):
"""Agent which implement the vanilla DQN algorithm"""
def _q_target(self, experiences, gamma):
states, actions, rewards, next_states, dones = experiences
# Propagate the target network and detach as we don't need gradient
q_next_target = self.qnetwork_target(next_states).detach()
# take maximum q values and add one single dimension to go from a [n] to a [n, 1] tensor
q_next_target = q_next_target.max(1)[0].unsqueeze(1)
# set the target
return rewards + gamma * q_next_target * (1 - dones)
class DoubleDQN(Agent):
"""Agent which implement the double DQN algorithm"""
def _q_target(self, experiences, gamma):
states, actions, rewards, next_states, dones = experiences
# get actions that maximize the local network
argmax_local_action = self.qnetwork_local(next_states).detach().argmax(dim=1).unsqueeze(1)
# evaluate the actions on the target network
q_next_target = self.qnetwork_target(next_states).detach().gather(1, argmax_local_action)
# set the target
return rewards + gamma * q_next_target * (1 - dones)
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, action_size, buffer_size, batch_size, seed):
"""
Initialize a ReplayBuffer object.
:param action_size: dimension of each action
:param buffer_size: maximum size of buffer
:param batch_size: size of each training batch
:param seed: random seed
"""
self.action_size = action_size
self.memory = deque(maxlen=buffer_size)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)