Skip to content

Latest commit

 

History

History
48 lines (36 loc) · 1.75 KB

TASKS.md

File metadata and controls

48 lines (36 loc) · 1.75 KB

Workshop Tasks

Complete these tasks in order to gain a comprehensive understanding of LangChain, RAG, and LLMs.

1. Setup and Introduction

  • Install dependencies and set up TypeScript configuration
  • Create a simple "Hello, World!" script using LangChain with TypeScript

2. LangChain Basics

  • Implement a basic LLM chain using TypeScript
  • Create a custom PromptTemplate and use it in a chain

3. Working with Vector Stores

  • Set up a local vector store (e.g., HNSWLib) with TypeScript
  • Implement document loading and splitting

4. Building a Simple RAG System

  • Create a TypeScript class for a basic RAG system
  • Implement retrieval and generation steps

5. Advanced RAG Techniques

  • Implement a conversation memory system
  • Create a custom retriever using LangChain and TypeScript

6. LangSmith Integration

  • Set up LangSmith for tracing and debugging
  • Implement logging and monitoring for your RAG system

7. Using Hugging Face Models

  • Integrate a Hugging Face model into your LangChain application
  • Implement a custom embedding model using Hugging Face Transformers

8. Building a Complete Project

  • Design and implement a RAG-based Q&A system
  • Add error handling and input validation

9. Testing and Optimization

  • Write unit tests for critical components
  • Implement performance optimizations (e.g., batching, caching)

10. Deployment and Best Practices

  • Containerize your application using Docker
  • Implement proper environment variable handling and security best practices

Bonus Challenges

  • Implement a hybrid search-and-generate system
  • Create a multi-modal RAG system (text + images)
  • Build a simple web interface for your RAG application