Complete these tasks in order to gain a comprehensive understanding of LangChain, RAG, and LLMs.
- Install dependencies and set up TypeScript configuration
- Create a simple "Hello, World!" script using LangChain with TypeScript
- Implement a basic LLM chain using TypeScript
- Create a custom PromptTemplate and use it in a chain
- Set up a local vector store (e.g., HNSWLib) with TypeScript
- Implement document loading and splitting
- Create a TypeScript class for a basic RAG system
- Implement retrieval and generation steps
- Implement a conversation memory system
- Create a custom retriever using LangChain and TypeScript
- Set up LangSmith for tracing and debugging
- Implement logging and monitoring for your RAG system
- Integrate a Hugging Face model into your LangChain application
- Implement a custom embedding model using Hugging Face Transformers
- Design and implement a RAG-based Q&A system
- Add error handling and input validation
- Write unit tests for critical components
- Implement performance optimizations (e.g., batching, caching)
- Containerize your application using Docker
- Implement proper environment variable handling and security best practices
- Implement a hybrid search-and-generate system
- Create a multi-modal RAG system (text + images)
- Build a simple web interface for your RAG application