-
Notifications
You must be signed in to change notification settings - Fork 2
/
test_model.py
149 lines (132 loc) · 4.94 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import torch.nn as nn
from dataclasses import dataclass
from typing import List, Tuple
import torch.nn.functional as F
# NOTE: We take the GPT2 implementation from nanoGPT: https://github.com/karpathy/nanoGPT
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(
config.n_embd, 3 * config.n_embd, bias=config.bias
)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
def forward(self, x):
(B, T, C) = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
y = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=None,
dropout_p=self.dropout if self.training else 0,
is_causal=True,
)
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y
class GPTMLP(nn.Module): # renamed to avoid name conflict
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(
config.n_embd, 4 * config.n_embd, bias=config.bias
)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(
4 * config.n_embd, config.n_embd, bias=config.bias
)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd, bias=config.bias)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd, bias=config.bias)
self.mlp = GPTMLP(config)
for module in self.modules():
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50304
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
dropout: float = 0.0
bias: bool = True
checkpoint_activations: bool = False
class GPT(nn.Module):
def __init__(self, config: GPTConfig):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
wte = nn.Embedding(config.vocab_size, config.n_embd)
wpe = nn.Embedding(config.block_size, config.n_embd)
torch.nn.init.normal_(wte.weight, mean=0.0, std=0.02)
torch.nn.init.normal_(wpe.weight, mean=0.0, std=0.02)
blocks: List[Block] = []
for _ in range(config.n_layer):
block = Block(config)
blocks.append(block)
self.transformer = nn.ModuleDict(
dict(
wte=wte,
wpe=wpe,
drop=nn.Dropout(config.dropout),
h=nn.ModuleList(blocks),
ln_f=nn.LayerNorm(config.n_embd, bias=config.bias),
)
)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.lm_head.weight = self.transformer.wte.weight
def forward(
self, idx: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
device = idx.device
b, t = idx.size()
assert (
t <= self.config.block_size
), f"Supports at most {self.config.block_size} but got {t}"
pos = torch.arange(0, t, dtype=torch.long, device=device)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
if self.config.checkpoint_activations:
# We only support composition with non-reentrant AC
x = torch.utils.checkpoint.checkpoint(
block, x, use_reentrant=False
)
else:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
return logits
def loss_fn(logits: torch.Tensor, targets: torch.Tensor):
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1
)
return loss