-
Notifications
You must be signed in to change notification settings - Fork 2
/
torch_compile_repro.py
329 lines (284 loc) · 10.2 KB
/
torch_compile_repro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
"""
torchrun --standalone --nproc_per_node=4 torch_compile_repro.py
NCCL_P2P_DISABLE=1 torchrun --standalone --nproc_per_node=4 torch_compile_repro.py
"""
from contextlib import nullcontext
import functools
import os
from dataclasses import dataclass
from typing import List, Tuple
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch.distributed._composable import checkpoint
from torch.utils._python_dispatch import TorchDispatchMode
from torch.distributed._composable.fsdp import (
fully_shard,
MixedPrecisionPolicy,
OffloadPolicy,
)
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
apply_activation_checkpointing,
)
from torch.distributed.fsdp.wrap import ModuleWrapPolicy
# NOTE: We take the GPT2 implementation from nanoGPT: https://github.com/karpathy/nanoGPT
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(
config.n_embd, 3 * config.n_embd, bias=config.bias
)
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
self.attn_dropout = nn.Dropout(config.dropout)
self.resid_dropout = nn.Dropout(config.dropout)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.dropout = config.dropout
def forward(self, x):
(B, T, C) = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
y = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=None,
dropout_p=self.dropout if self.training else 0,
is_causal=True,
)
y = y.transpose(1, 2).contiguous().view(B, T, C)
y = self.resid_dropout(self.c_proj(y))
return y
class GPTMLP(nn.Module): # renamed to avoid name conflict
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(
config.n_embd, 4 * config.n_embd, bias=config.bias
)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(
4 * config.n_embd, config.n_embd, bias=config.bias
)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
x = self.dropout(x)
return x
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd, bias=config.bias)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd, bias=config.bias)
self.mlp = GPTMLP(config)
for module in self.modules():
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
@dataclass
class GPTConfig:
block_size: int = 1024
vocab_size: int = 50304
n_layer: int = 12
n_head: int = 12
n_embd: int = 768
dropout: float = 0.0
bias: bool = True
checkpoint_activations: bool = False
class GPT(nn.Module):
def __init__(self, config: GPTConfig):
super().__init__()
assert config.vocab_size is not None
assert config.block_size is not None
self.config = config
wte = nn.Embedding(config.vocab_size, config.n_embd)
wpe = nn.Embedding(config.block_size, config.n_embd)
torch.nn.init.normal_(wte.weight, mean=0.0, std=0.02)
torch.nn.init.normal_(wpe.weight, mean=0.0, std=0.02)
blocks: List[Block] = []
for _ in range(config.n_layer):
block = Block(config)
blocks.append(block)
self.transformer = nn.ModuleDict(
dict(
wte=wte,
wpe=wpe,
drop=nn.Dropout(config.dropout),
h=nn.ModuleList(blocks),
ln_f=nn.LayerNorm(config.n_embd, bias=config.bias),
)
)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.lm_head.weight = self.transformer.wte.weight
def forward(
self, idx: torch.Tensor, targets: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
device = idx.device
b, t = idx.size()
assert (
t <= self.config.block_size
), f"Supports at most {self.config.block_size} but got {t}"
pos = torch.arange(0, t, dtype=torch.long, device=device)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = self.transformer.drop(tok_emb + pos_emb)
for block in self.transformer.h:
if self.config.checkpoint_activations:
# We only support composition with non-reentrant AC
x = torch.utils.checkpoint.checkpoint(
block, x, use_reentrant=False
)
else:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1
)
return loss
def meta_init_model(config: GPTConfig) -> nn.Module:
torch.manual_seed(42)
with torch.device("meta"):
model = GPT(config)
return model
def apply_fsdp_wrapping(
model: nn.Module,
use_activation_checkpoint: bool,
use_cpu_offload: bool,
use_compile: bool,
):
param_dtype = torch.bfloat16
mp_policy = MixedPrecisionPolicy(param_dtype=param_dtype)
# offload_policy = OffloadPolicy("cpu" if use_cpu_offload else None)
if use_activation_checkpoint and use_compile:
apply_activation_checkpointing(
model, auto_wrap_policy=ModuleWrapPolicy((Block,))
)
fully_shard_fn = functools.partial(
fully_shard,
mp_policy=mp_policy, # offload_policy=offload_policy
)
for i, module in enumerate(model.transformer.h):
if use_compile:
module.forward = torch.compile(module.forward)
if use_activation_checkpoint and not use_compile:
# TODO: This does not work with compile! P872011846
checkpoint(module)
fully_shard_fn(
module, reshard_after_forward=(i < len(model.transformer.h) - 1)
)
model = fully_shard_fn(model)
return model
vocab_size = 50304
n_layer = 4
class MyDispatchMode(TorchDispatchMode):
def __torch_dispatch__(self, func, types, args=..., kwargs=None):
res = func(*args, **kwargs or {})
return res
USE_DISPATCH = True
def test_memory_tracking(
use_activation_checkpoint: bool,
use_cpu_offload: bool,
use_compile: bool,
):
try:
rank = dist.get_rank()
except:
rank = 0
config = GPTConfig(block_size=2048, n_layer=n_layer, vocab_size=vocab_size)
model = meta_init_model(config)
if rank == 0:
print(
f"peak active before model init: {torch.cuda.memory_allocated()/1024**2} MB"
)
model = apply_fsdp_wrapping(
model, use_activation_checkpoint, use_cpu_offload, use_compile
)
model.to_empty(device="cuda")
if rank == 0:
print(
f"peak active after model init: {torch.cuda.memory_allocated()/1024**2} MB"
)
optim = torch.optim.Adam(model.parameters(), lr=1e-2, foreach=True)
torch.manual_seed(rank + 1)
bsz, seq_len = 32, 1024
src = torch.randint(0, vocab_size, (bsz, seq_len), device="cuda")
tgt = torch.randint(0, vocab_size, (bsz, seq_len), device="cuda")
inp = (src, tgt)
dist.barrier()
def inner(num_iters: int):
for _ in range(num_iters):
optim.zero_grad()
loss = model(*inp)
loss.backward()
optim.step()
torch.cuda.synchronize()
if rank == 0:
print(
f"peak active after 1st iter: {torch.cuda.memory_allocated()/1024**2} MB"
)
num_iters = 2
with MyDispatchMode()if USE_DISPATCH else nullcontext():
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record(torch.cuda.current_stream())
inner(num_iters)
end.record(torch.cuda.current_stream())
iter_time = start.elapsed_time(end)
if rank == 0:
print(f"Time per iter: {iter_time/num_iters:.3f} ms")
mem_stats = torch.cuda.memory_stats()
peak_active_gb = mem_stats["active_bytes.all.peak"] / (1024**3)
peak_reserved_gb = mem_stats["reserved_bytes.all.peak"] / (1024**3)
num_retries = mem_stats["num_alloc_retries"]
if rank == 0:
print(
f"peak active: {peak_active_gb} GB | peak reserved:"
f" {peak_reserved_gb} GB | num_retries: {num_retries}"
)
dist.barrier()
if __name__ == "__main__":
try:
dist.init_process_group(backend="nccl")
gpu_id = int(os.environ["LOCAL_RANK"])
except: # assume single GPU
gpu_id = 0
device = f"cuda:{gpu_id}"
torch.cuda.set_device(device)
# TODO: Use argparse for the different args plus profiler / memory trace.
# use_cpu_offload = True
use_cpu_offload = False
# use_activation_checkpoint = False
use_activation_checkpoint = False
# use_compile = True
use_compile = True
if use_compile:
import torch._dynamo
torch._dynamo.config.cache_size_limit = n_layer + 2
test_memory_tracking(
use_activation_checkpoint, use_cpu_offload, use_compile
)
try:
dist.destroy_process_group()
except:
pass
def test_fn():
a = torch.randn(100, device="cuda")
w1 = torch.randn(128, 100, device="cuda")
w2 = torch.randn(256, 100, device="cuda")
b = torch.cos(a)
c = torch.sin(a)
d = torch.mm(w1, b)
e = torch.mm(w2, c)
return torch.mm(d, e)