-
Notifications
You must be signed in to change notification settings - Fork 18
/
rnn_train.py
310 lines (247 loc) · 11.8 KB
/
rnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import csv
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
import numpy as np
from torchvision import transforms, datasets
from torch.utils.data import Dataset
import torchaudio
import pandas as pd
import numpy as np
import librosa
import torchvision
from torchvision.utils import save_image
import torch.nn.functional as F
import argparse
from torch.optim import lr_scheduler
from python_speech_features import mfcc
from python_speech_features import delta
from python_speech_features import logfbank
import scipy.io.wavfile as wav
import time
import copy
from RNNs import *
from lstm import *
from tensorboardX import SummaryWriter
device = torch.device('cuda')
parser = argparse.ArgumentParser()
parser.add_argument('--cuda', type=bool, default=True, help="run the following code on a GPU")
parser.add_argument('--batch_size', type=int, default=50, help="batch size for training")
parser.add_argument('--num_workers', type=int, default=4, help="number of workers for training")
parser.add_argument('--initial_learning_rate', type=float, default=0.00001, help='starting learning rate')
parser.add_argument('--model_save', type=str, default='model', help="save the model")
parser.add_argument('--log_file', type=str, default='log.txt', help="text file to save training logs")
parser.add_argument('--load_saved', type=bool, default=False, help="flag to indicate if a saved model will be loaded")
parser.add_argument('--start_epoch', type=int, default=0, help="flag to set the starting epoch for training")
parser.add_argument('--end_epoch', type=int, default=100, help="flag to indicate the final epoch of training")
parser.add_argument('--frames', type=int, default=41)
parser.add_argument('--bands', type=int, default=60)
parser.add_argument('--num_features', type=int, default=2)
parser.add_argument('--seq_num', type=int, default=7)
parser.add_argument('--hidden_size', type=int, default=5300, help="hidden size for lstm")
parser.add_argument('--num_layers', type=int, default=1, help="no. of layers for lstm")
parser.add_argument('--num_classes', type=int, default=10, help="number of classes for classification")
# parser.add_argument('--data_Size', type=int, default=3477, help="size of the dataset")
FLAGS = parser.parse_args()
# Hyper Parameters
# hidden_size = 60
# num_layers = 2
# num_classes = 10
# batch_size = 100
# num_epochs = 10
# learning_rate = 0.001
# data_Size = 3477
def windows(data, window_size):
start = 0
while start < len(data):
yield start, start + window_size
start += (window_size / 2)
def extract_features(sound_clip, label, bands = 60, frames = 41):
window_size = 512 * (frames - 1)
log_specgrams = []
labels = []
for (start,end) in windows(sound_clip,window_size):
if(len(sound_clip[int(start):int(end)]) == window_size):
signal = sound_clip[int(start):int(end)]
melspec = librosa.feature.melspectrogram(signal, n_mels = bands)
mfcc = librosa.feature.mfcc(sound_clip, label)
logspec = librosa.core.amplitude_to_db(melspec)
logspec = logspec.T.flatten()[:, np.newaxis].T
log_specgrams.append(logspec)
labels.append(label)
log_specgrams = np.asarray(log_specgrams).reshape(len(log_specgrams),bands,frames,1)
features = np.concatenate((log_specgrams, np.zeros(np.shape(log_specgrams))), axis = 3)
for i in range(len(features)):
features[i, :, :, 1] = librosa.feature.delta(features[i, :, :, 0])
return torch.from_numpy(np.array(features)), torch.from_numpy(np.array(labels,dtype = np.int))
class UrbanSoundDataset(Dataset):
def __init__(self, file_path):
files = os.listdir(file_path)
self.labels = []
self.file_names = []
for i in files:
x = i.split('_')
self.file_names.append(i)
self.labels.append((int)(x[1]))
self.file_path = file_path
def __getitem__(self, index):
path = self.file_path + str(self.file_names[index]) #+ '.wav'
sound = torch.load(path)
soundData = sound
return soundData, self.labels[index]
def __len__(self):
return len(self.file_names)
# class RNN(nn.Module):
# def __init__(self, input_size, hidden_size, num_layers, num_classes):
# super(RNN, self).__init__()
# self.hidden_size = FLAGS.hidden_size
# self.num_layers = FLAGS.num_layers
# self.lstm = nn.LSTM(input_size, self.hidden_size, self.num_layers, batch_first=True, dropout=0.4)#, bidirectional=True)
# self.fc1 = nn.Linear(hidden_size, hidden_size)
# self.relu = nn.ReLU()
# self.fc = nn.Linear(hidden_size, num_classes)
# def forward(self, x):
# x = x.float()
# h0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size).float()).cuda()
# c0 = Variable(torch.zeros(self.num_layers, x.size(0), self.hidden_size).float()).cuda()
# out, _ = self.lstm(x, (h0, c0))
# out = self.relu(self.fc1(out[:, -1, :]))
# out = self.fc(out)
# return out
# =======================================================================================
# data_dir = '/home/ankitas/Desktop/DL_A2/data/train_set/fold1/'
# csv_path = '/home/ankitas/Desktop/DL_A2/data/train.csv'
# arr = os.listdir(data_dir)#+'fold1/')
# with open(os.path.join(data_dir,csv_path),'r') as f:
# reader = csv.reader(f)
# tr_anno_dict = dict( (k[0],k[1]) for k in reader)
# data_dir = '/home/ankitas/Desktop/DL_A2/data/test/'
# csv_path = '/home/ankitas/Desktop/DL_A2/data/test.csv'
# arr = os.listdir(data_dir)
# with open(os.path.join(data_dir,csv_path),'r') as f:
# reader = csv.reader(f)
# val_anno_dict = dict( (k[0],k[1]) for k in reader)
# print(len(arr))
# for i in arr:
# print(i)
# sound = librosa.load(os.path.join(data_dir, i))
# label = tr_anno_dict[i.split('.')[0]]
# features, labels = extract_features(sound, label)
# #print(features.size())
# dim = 7 - features.size()[0]
# resultant_feature = torch.zeros(dim, FLAGS.bands, FLAGS.frames, FLAGS.num_features).double()
# if(dim!=0):
# resultant_feature = torch.cat([features, resultant_feature], 0)
# else:
# resultant_feature = feature
# torch.save(resultant_feature, '/home/ankitas/Desktop/DL_A2/data/features/train/'+i.split('.')[0]+ '_'+label+'_'+(str)(dim))
# break
# =======================================================================================
input_size = FLAGS.bands*FLAGS.frames*FLAGS.num_features
rnn = RNN(input_size, FLAGS.hidden_size, FLAGS.num_layers, FLAGS.num_classes)
#rnn = LSTM(input_size, FLAGS.hidden_size)
if(FLAGS.cuda):
rnn.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(rnn.parameters(), lr=FLAGS.initial_learning_rate)
def loader(path):
x = torch.load(path)
return x
root_data_dir = './data/combined_features'
# val_data_dir = './data/features/val/'
# train_set = UrbanSoundDataset(train_data_dir)
# val_set = UrbanSoundDataset(val_data_dir)
# urban_sound_train = torch.utils.data.DataLoader(train_set, batch_size=FLAGS.batch_size, shuffle=True, drop_last=True)
# urban_sound_val = torch.utils.data.DataLoader(val_set, batch_size=FLAGS.batch_size, shuffle=True, drop_last=True)
data_sets = {x: UrbanSoundDataset(str(os.path.join(root_data_dir, x))+str('/'))
for x in ['train', 'test']}
dataloaders = {x: torch.utils.data.DataLoader(data_sets[x], batch_size=FLAGS.batch_size,
shuffle=True, num_workers=0,drop_last=True)
for x in ['train', 'test']}
dataset_sizes = {x: len(data_sets[x]) for x in ['train', 'test']}
writer = SummaryWriter()
# for epoch in range(FLAGS.start_epoch, FLAGS.end_epoch):
# running_loss = 0
# for batch_idx, (audio, label) in enumerate(urban_sound):
# audio = audio.view(FLAGS.batch_size, -1).cuda()
# optimizer.zero_grad()
# predicted = rnn(audio.view(FLAGS.batch_size, FLAGS.seq_num, input_size)).cuda()
# actual_label = torch.from_numpy(np.asarray(label)).cuda()
# loss = criterion(predicted, actual_label)
# running_loss += loss.item()
# loss.backward()
# optimizer.step()
# if(batch_idx%10==0):
# print("Loss:", batch_idx, loss.item())
# print('epoch '+ str(epoch) + ' , loss = ' + str(running_loss/(int)(FLAGS.data_Size/FLAGS.batch_size)))
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(FLAGS.start_epoch, FLAGS.end_epoch):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'test']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0.0
# Iterate over data.
for audio, label in dataloaders[phase]:
audio = audio.to(device)
audio = audio.view(FLAGS.batch_size, -1)
label = label.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(audio.view(FLAGS.batch_size, FLAGS.seq_num, input_size)).squeeze_(0)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, label)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * audio.size(0)
running_corrects += torch.sum(preds == label.data)
with open(FLAGS.log_file, 'a') as log:
log.write('{0}\t{1}\t{2}\n'.format(
epoch,
running_loss,
running_corrects
))
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = float(running_corrects) / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
if (phase == 'train'):
writer.add_scalar('Training Loss', epoch_loss, epoch)#.data.storage().tolist()[0],epoch)
writer.add_scalar('Training Classification Accuracy', epoch_acc, epoch)#.data.storage().tolist()[0],epoch)
if (phase == 'test'):
writer.add_scalar('Validation Loss', epoch_loss, epoch)#.data.storage().tolist()[0],epoch)
writer.add_scalar('Validation Classification Accuracy', epoch_acc, epoch)#.data.storage().tolist()[0],epoch)
# deep copy the model
if phase == 'test' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)
model_ft = train_model(rnn.to(device), criterion, optimizer, exp_lr_scheduler,
num_epochs=FLAGS.end_epoch-FLAGS.start_epoch)
torch.save(model_ft,'bestModel.pt')