Skip to content

Latest commit

 

History

History
195 lines (175 loc) · 14.5 KB

README.md

File metadata and controls

195 lines (175 loc) · 14.5 KB

promql-jsonnet promql-jsonnet

A Jsonnet based DSL for writing PromQL queries. This is useful when creating grafana dashboards using grafonnet. Instead of having to template strings manually, you can now use immutable builders to DRY out your PromQL queries.

This library generates jsonnet strings, which can be fed to the expr field of the prometheus target in graffonet.

Usage

Here is a quick example that constructs a PromQL query for a counter:

local promql = import "promql.libsonnet";

promql.new("prometheus_http_requests_total")
      .withLabels({
          code: "200",
          handler: "/api/v1/query",
      })
      .sum()
      .delta(["5m","5m"])
      .build()

// promql result: delta(sum(prometheus_http_requests_total{code="200",handler="/api/v1/query"})[5m:5m])

Usage is natural, if you know what you're looking to construct. The general steps are as follows:

  1. Import promql from the promql.libsonnet file.
  2. Use promql.new("...") to start creating a query.
  3. You can specify labels to filter with .withLabels({...}).
  4. Call functions for any aggregations, transformations that you want to do.
  5. Finally don't forget to call .build() to get the generated PromQL query as a jsonnet string.
  6. You can pass this to the expr field for the prometheus target from grafonnet like this:
    local promql = import "promql.libsonnet";
    local grafana = import "grafonnet.libsonnet";
    
    local http_success_query = promql.new("prometheus_http_requests_total")
                                    .withLabels({code:"200"})
                                    .sum()
                                    .delta(["$__interval", "$__interval"])
                                    .build();
    
    grafana.prometheus.target(expr=http_success_query, ...)

Label Matchers

  • There are two ways to specify label matchers.
  • If you're using the = equals matcher, then you can use the shorter .withLabels({...}) function to specify multiple filters:
    promql.new("prometheus_http_requests_total")
          .withLabels({success:"true", handler:"/api/v1/query"});
          .build()
    // output: prometheus_http_requests_total{success="true",handler="/api/v1/query"}
  • If you need the other matchers like !=, =~ or !~ you need to use the .withLabel({key,op,value}) function.
    promql.new("prometheus_http_requests_total")
          .withLabel({key:"success", op: "=", value:"true"});
          .withLabel({key:"handler", op: "=~", value:"/api/v1/"});
          .withLabel({key:"method",  op: "!=", value:"GET"});
          .build()
    // output: prometheus_http_requests_total{success="true",handler=~"/api/v1/",method!="GET"}
  • You can also mix and match the two as needed:
    promql.new("prometheus_http_requests_total")
          .withLabels({success:"true", handler:"/api/v1/query"});
          .withLabel({key:"method", op: "!=", value:"GET"});
          .build()
    // output: prometheus_http_requests_total{success="true",handler="/api/v1/query",method!="GET"}

Aggregation operators

  • Aggregation operators like sum, avg etc. take instant vectors and return another instant vector.
  • These also support the following optional clauses with a list of labels:
    • by clause - .topk(5, by=["host"])
    • without clause - .avg(without=["handler"])
  • Sample usage:
    promql.new("prometheus_http_requests_total")
          .withLabels({code:"200"})
          .sum(by=["handler", "instance"])
          .build()
    // output: sum by (handler,instance) (prometheus_http_requests_total{code="200"})

Range Vector Functions

  • A PromQL Range Selector is represented in jsonnet by a 2-tuple of duration strings: ["1m","1m"].
  • The first one represents the actual range, while the second is the resolution.
  • Since applying a range selector by itself is not of much use, this library couples it to all functions that expect a range-vector.
  • Thus to construct delta(prometheus_http_requests_total{status_code="200"}[1m:1m]), the code would look like:
    promql.new("prometheus_http_requests_total")
          .withLabels({status_code:"200"})
          .delta(["1m","1m"])
          .build()
  • When using Grafana, you want to let it fill appropriate durations for the range selectors using the $__interval variable. To support this, we don't perform any validation for the duration fields, thus code like this is allowed:
    promql.new("prometheus_http_requests_total")
          .withLabels({status_code:"200"})
          .delta(["$__interval","$__interval"])
          .build()
    // output: delta(prometheus_http_requests_total{status_code="200"}[$__interval:$__interval])

API Reference and PromQL Support

PromQL Function Sample Jsonnet Usage Support
Aggregation Functions
sum(instant-vector) .sum() ✔️
min(instant-vector) .min() ✔️
max(instant-vector) .max() ✔️
avg(instant-vector) .avg() ✔️
group(instant-vector) .group() ✔️
stddev(instant-vector) .stddev() ✔️
stdvar(instant-vector) .stdvar() ✔️
count(instant-vector) .count() ✔️
count_values(string, instant-vector) .count_values("my-label-name") ✔️
bottomk(scalar, instant-vector) .bottomk(5) ✔️
topk(scalar, instant-vector) .topk(5) ✔️
quantile(scalar, instant-vector) .quantile("0.99") ✔️
Instant Vector Functions
abs(instant-vector) .abs() ✔️
absent(instant-vector) .absent() ✔️
ceil(instant-vector) .ceil() ✔️
clamp_max(instant-vector, scalar) .clamp_max(5) ✔️
clamp_min(instant-vector, scalar) .clamp_min(5) ✔️
exp(instant-vector) .exp() ✔️
floor(instant-vector) .floor() ✔️
histogram_quantile(scalar, instant-vector) .histogram_quantile("0.90") ✔️
label_join(instant-vector, string, string, string...) 🚧
label_replace(instant-vector, string, string, string, string) 🚧
ln(instant-vector) .ln() ✔️
log10(instant-vector) .log10() ✔️
log2(instant-vector) .log2() ✔️
round(instant-vector, scalar) .round(2) ✔️
scalar(instant-vector) .scalar() ✔️
sort(instant-vector) .sort() ✔️
sort_desc(instant-vector) .sort_desc() ✔️
sqrt(instant-vector) .sqrt() ✔️
day_of_month(instant-vector) 🚧
day_of_week(instant-vector) 🚧
days_in_month(instant-vector) 🚧
hour(instant-vector) 🚧
minute(instant-vector) 🚧
month(instant-vector) 🚧
year(instant-vector) 🚧
timestamp(instant-vector) 🚧
Range Vector Functions
changes(range-vector) .changes(["1m","1m"]) ✔️
absent_over_time(range-vector) .absent_over_time(["1m","1m"]) ✔️
delta(range-vector) .delta(["1m","1m"]) ✔️
deriv(range-vector) .deriv(["1m","1m"]) ✔️
holt_winters(range-vector, scalar, scalar) .holt_winters(["1m","1m"], "0.5", "0.5") ✔️
idelta(range-vector) .idelta(["1m","1m"]) ✔️
increase(range-vector) .increase(["1m","1m"]) ✔️
irate(range-vector) .irate(["1m","1m"]) ✔️
predict_linear(range-vector, scalar) .predict_linear(["1m","1m"], 60) ✔️
rate(range-vector) .rate(["1m","1m"]) ✔️
resets(range-vector) .resets(["1m","1m"]) ✔️
avg_over_time(range-vector) .avg_over_time(["1m","1m"]) ✔️
min_over_time(range-vector) .min_over_time(["1m","1m"]) ✔️
max_over_time(range-vector) .max_over_time(["1m","1m"]) ✔️
sum_over_time(range-vector) .sum_over_time(["1m","1m"]) ✔️
count_over_time(range-vector) .count_over_time(["1m","1m"]) ✔️
quantile_over_time(scalar, range-vector) .quantile_over_time("0.90", ["1m","1m"]) ✔️
stddev_over_time(range-vector) .stddev_over_time(["1m","1m"]) ✔️
stdvar_over_time(range-vector) .stdvar_over_time(["1m","1m"]) ✔️
Miscellaneous Functions
vector(scalar) 🚧
time() 🚧

Running the tests

  • Unit Tests: jsonnet unit-tests.jsonnet
  • Integration Tests
    1. Start a prometheus listening at http://localhost:9090 with
      docker run -p 127.0.0.1:9090:9090 --rm --name "promql-jsonnet-prometheus" -it prom/prometheus
    2. Run ./integration_tests.sh