-
Notifications
You must be signed in to change notification settings - Fork 2
/
model.py
240 lines (199 loc) · 9.25 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch
import torch.nn.functional as F
import pytorch_lightning as pl
import torchmetrics
from nn.res_edgegatconv import ResidualEdgeGATConv
class SCENE(pl.LightningModule):
def __init__(
self,
in_nodes,
hidden_size,
out_sizes,
num_heads,
canonical_etypes,
learning_rate=0.001,
weight_decay=0.0,
dropout=0.0,
):
"""Graph convolution model from `SCENE <https://arxiv.org/pdf/2301.03512.pdf>`.
The model cascades multiple layers of graph convolution to aggregate information
into the nodes to be classified.
Args:
in_nodes (dict): Dictionary containing node types and number of nodes per node type
of the knowledge graph to be trained on.
hidden_size (int): Hidden size used during graph convolution.
out_sizes (dict): Dictionary containing the node type to be classified and the number
of possible classes of this node type.
num_heads (int): Number of attention heads of the EdgeGAT operator.
canonical_etypes (list[(str, str, str)]): List of the canonical edge types of the knowledge
graph to be trained on.
learning_rate (float, optional): Learning rate for Adam optimizer. Defaults to 0.001.
weight_decay (float, optional): Weight decay for Adam optimizer. Defaults to 0.0.
dropout (float, optional): Dropout applied during decoding. Defaults to 0.0.
"""
super().__init__()
self.in_nodes = in_nodes
self.hidden_size = hidden_size
self.out_sizes = out_sizes
self.num_heads = num_heads
self.canonical_etypes = canonical_etypes
self.learning_rate = learning_rate
self.weight_decay = weight_decay
self.dropout_p = dropout
# Extract training objective
self.category = list(out_sizes.keys())[0]
self.out_size = out_sizes[self.category]
# Create node embeddings
self.node_embeddings = torch.nn.ParameterDict()
for key in in_nodes:
embed = torch.nn.Parameter(
torch.Tensor(in_nodes[key], hidden_size))
torch.nn.init.xavier_uniform_(
embed, gain=torch.nn.init.calculate_gain('relu'))
self.node_embeddings[key] = embed
# Initialize graph convolutions (cascaded style)
self.full_graph_conv = torch.nn.ModuleDict()
self.full_graph_conv["conv_1"] = torch.nn.ModuleDict()
self.full_graph_conv["conv_2"] = torch.nn.ModuleDict()
self.full_graph_conv["conv_3"] = torch.nn.ModuleDict()
self.full_graph_conv["conv_4"] = torch.nn.ModuleDict()
for edge in canonical_etypes:
which_graph_conv = None
if (edge[0] == edge[2]) and (edge[0] != self.category):
# Self-conv excluding the target node
which_graph_conv = "conv_1"
elif (edge[0] != edge[2]) and (edge[2] != self.category):
# Conv from all nodes to others but the target node
which_graph_conv = "conv_2"
elif (edge[2] == self.category) and (edge[0] != self.category):
# Conv to the target node
which_graph_conv = "conv_3"
elif (edge[2] == self.category) and (edge[0] == self.category):
# Self update
which_graph_conv = "conv_4"
else:
NotImplementedError(
f"Undefined graph convolution for edge {edge}")
if which_graph_conv is not None:
self.full_graph_conv[which_graph_conv][str(edge)] = ResidualEdgeGATConv(
in_feats=hidden_size, out_feats=hidden_size, num_heads=num_heads)
# Initialize decoder
self.decoder_1 = torch.nn.Linear(
in_features=hidden_size*3, out_features=hidden_size)
self.dropout_1 = torch.nn.Dropout(p=dropout)
self.decoder_2 = torch.nn.Linear(
in_features=hidden_size, out_features=self.out_size)
self.dropout_2 = torch.nn.Dropout(p=dropout)
self.save_hyperparameters()
def forward(self, graph):
"""Forward pass of the model.
Args:
graph (dgl.heterograph.DGLHeteroGraph): Input graph.
Returns:
torch.Tensor: Predicted labels.
"""
# Node embedding update
for ntype in graph.ntypes:
graph.nodes[ntype].data["x"] = F.relu(self.node_embeddings[ntype])
# Iterate over the cascaded layers
for conv_key, conv_dict in self.full_graph_conv.items():
# Collect the node types that are possible targets during this layer of graph convolution
conv_dict_key_tuples = [
tuple(map(str, string[2:-2].split("', '"))) for string in conv_dict.keys()]
targets = [x[2] for x in conv_dict_key_tuples]
targets = list(set(targets))
embeddings = {x: 0.0 for x in targets}
# Do graph convolution
for curr_conv_key, curr_conv in conv_dict.items():
# Get key of target node
curr_tuple = tuple(map(str, curr_conv_key[2:-2].split("', '")))
target_ntype = curr_tuple[2]
# Extract subgraph
curr_subgraph = graph.edge_type_subgraph([curr_tuple])
src_feats = graph.nodes[curr_tuple[0]].data["x"]
dst_feats = graph.nodes[curr_tuple[2]].data["x"]
embeddings[target_ntype] += curr_conv(
curr_subgraph, (src_feats, dst_feats))
# Update each node simultaneously
for node_key, embedding in embeddings.items():
graph.nodes[node_key].data["x"] = F.relu(embedding)
# Residual values
if conv_key == "conv_2":
x_res1 = graph.nodes[self.category].data["x"]
if conv_key == "conv_3":
x_res2 = graph.nodes[self.category].data["x"]
# Decoder
x = graph.nodes[self.category].data["x"]
x = torch.cat([x, x_res1, x_res2], dim=-1)
x = self.dropout_1(x)
x = self.decoder_1(x)
x = F.relu(x)
x = self.dropout_2(x)
x = self.decoder_2(x)
# No softmax, because nn.CrossEntropy already does that
return x
def configure_optimizers(self):
""" Configuration of the optimizer.
Returns:
torch.optim.adam.Adam: Optimizer used during training.
"""
optimizer = torch.optim.Adam(
self.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
return optimizer
def training_step(self, batch, batch_idx):
"""Training step of the model.
Args:
batch (dgl.heterograph.DGLHeteroGraph): Input graph.
batch_idx (int): Index of current batch.
Returns:
torch.Tensor: Loss.
"""
out = self(batch)
y = batch.nodes[self.category].data["labels"].squeeze()
mask = batch.nodes[self.category].data["train_mask"].to(torch.bool)
out_labeled = out[mask]
y_labeled = y[mask]
loss = F.cross_entropy(out_labeled, y_labeled)
# Logging to TensorBoard (disabled by the trainer)
self.log("loss_train", loss)
return loss
def validation_step(self, batch, batch_idx):
"""Validation step of the model.
Args:
batch (dgl.heterograph.DGLHeteroGraph): Input graph.
batch_idx (int): Index of current batch.
Returns:
(torch.Tensor, torch.Tensor): Tuple containing predictions and labels.
"""
out = self(batch)
y = batch.nodes[self.category].data["labels"].squeeze()
mask = batch.nodes[self.category].data["test_mask"].to(torch.bool)
out_labeled = out[mask]
y_labeled = y[mask]
loss = F.cross_entropy(out_labeled, y_labeled)
# Logging to TensorBoard (disabled by the trainer)
self.log("loss_test", loss, prog_bar=True)
y_pred_softmax = torch.log_softmax(out_labeled, dim=-1)
_, y_pred = torch.max(y_pred_softmax, dim=-1)
return y_pred, y_labeled
def validation_epoch_end(self, validation_step_outputs):
"""Evaluation at the end of validation.
Args:
validation_step_outputs ([(torch.Tensor, [torch.Tensor)]): List of tuples
containing predictions and labels.
"""
pred = [out[0] for out in validation_step_outputs]
y = [out[1] for out in validation_step_outputs]
pred = torch.cat(pred)
y = torch.cat(y)
self.end_log_dict = dict()
if len(pred) and len(y): # Avoid throwing error in f1 if all are masked
acc_test = torchmetrics.functional.accuracy(pred, y.to(int))
self.end_log_dict["acc_test"] = acc_test
f1_score_micro = torchmetrics.functional.f1(
pred, y.to(int), average="micro")
self.end_log_dict["f1_test_micro"] = f1_score_micro
f1_score_macro = torchmetrics.functional.f1(
pred, y.to(int), average="macro", num_classes=self.out_size)
self.end_log_dict["f1_test_macro"] = f1_score_macro
self.log_dict(self.end_log_dict, prog_bar=True)