-
Notifications
You must be signed in to change notification settings - Fork 47
/
center_projection_layer.cu
112 lines (104 loc) · 3.78 KB
/
center_projection_layer.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#include <vector>
#include "caffe/filler.hpp"
#include "caffe/layers/center_projection_layer.hpp"
#include "caffe/util/math_functions.hpp"
namespace caffe {
template <typename Dtype>
__global__ void L2Normalize(const int n, const Dtype* in, Dtype* out, int length){
CUDA_KERNEL_LOOP(index, n) {
Dtype sum = 0;
for ( int i = 0; i < length; i++ )
{
sum = sum + in[ index*length + i ] * in[ index*length + i ];
}
sum = sqrt(sum)+1e-6;
for ( int i = 0; i < length; i++ )
{
out[ index*length + i ] = in[ index*length + i ] / sum;
}
}
}
template <typename Dtype>
void CenterProjectionLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[ 0 ]->gpu_data();
Dtype* top_data = top[ 0 ]->mutable_gpu_data();
Dtype* weight_writable = this->blobs_[ 0 ]->mutable_gpu_data();
const Dtype* weight = this->blobs_[ 0 ]->gpu_data();
if ( M_ == 1 ) {
caffe_gpu_gemv<Dtype>(CblasNoTrans, N_, K_, ( Dtype )1.,
weight, bottom_data, ( Dtype )0., top_data);
if ( bias_term_ )
caffe_gpu_axpy<Dtype>(N_, bias_multiplier_.cpu_data()[ 0 ],
this->blobs_[ 1 ]->gpu_data(), top_data);
}
else {
// Step 1: Normalize weight
L2Normalize<Dtype> << <CAFFE_GET_BLOCKS(N_), CAFFE_CUDA_NUM_THREADS >> >(N_, weight, weight_writable, K_);
CUDA_POST_KERNEL_CHECK;
/*Dtype* squared_data = squared_.mutable_gpu_data();
caffe_gpu_powx(N_*K_, weight, Dtype(2), squared_data);
Dtype normsqr;
for (int i = 0; i<N_; ++i) {
caffe_gpu_asum<Dtype>(K_, squared_data + i*K_, &normsqr);
caffe_gpu_scale<Dtype>(K_, pow(normsqr, -0.5), weight + i*K_, weight_writable + i*K_);
caffe_gpu_scale<Dtype>(K_, rescale_coeff_, weight + i*K_, weight_writable + i*K_);
}*/
// Step 2: Get projection
caffe_gpu_gemm<Dtype>(CblasNoTrans,
transpose_ ? CblasNoTrans : CblasTrans,
M_, N_, K_, rescale_coeff_,
bottom_data, weight, ( Dtype )0., top_data);
if ( bias_term_ )
caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans, M_, N_, 1, ( Dtype )1.,
bias_multiplier_.gpu_data(),
this->blobs_[ 1 ]->gpu_data(), ( Dtype )1., top_data);
}
}
template <typename Dtype>
void CenterProjectionLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
if ( this->param_propagate_down_[ 0 ] ) {
const Dtype* top_diff = top[ 0 ]->gpu_diff();
const Dtype* bottom_data = bottom[ 0 ]->gpu_data();
// Gradient with respect to weight
if ( transpose_ ) {
caffe_gpu_gemm<Dtype>(CblasTrans, CblasNoTrans,
K_, N_, M_,
rescale_coeff_, bottom_data, top_diff,
( Dtype )1., this->blobs_[ 0 ]->mutable_gpu_diff());
}
else {
caffe_gpu_gemm<Dtype>(CblasTrans, CblasNoTrans,
N_, K_, M_,
rescale_coeff_, top_diff, bottom_data,
( Dtype )1., this->blobs_[ 0 ]->mutable_gpu_diff());
}
}
if ( bias_term_ && this->param_propagate_down_[ 1 ] ) {
const Dtype* top_diff = top[ 0 ]->gpu_diff();
// Gradient with respect to bias
caffe_gpu_gemv<Dtype>(CblasTrans, M_, N_, ( Dtype )1., top_diff,
bias_multiplier_.gpu_data(), ( Dtype )1.,
this->blobs_[ 1 ]->mutable_gpu_diff());
}
if ( propagate_down[ 0 ] ) {
const Dtype* top_diff = top[ 0 ]->gpu_diff();
// Gradient with respect to bottom data
if ( transpose_ ) {
caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasTrans,
M_, K_, N_,
rescale_coeff_, top_diff, this->blobs_[0]->gpu_data(),
( Dtype )0., bottom[ 0 ]->mutable_gpu_diff());
}
else {
caffe_gpu_gemm<Dtype>(CblasNoTrans, CblasNoTrans,
M_, K_, N_,
rescale_coeff_, top_diff, this->blobs_[0]->gpu_data(),
( Dtype )0., bottom[ 0 ]->mutable_gpu_diff());
}
}
}
INSTANTIATE_LAYER_GPU_FUNCS(CenterProjectionLayer);
} // namespace caffe