-
-
Notifications
You must be signed in to change notification settings - Fork 25.4k
/
_gaussian_mixture.py
754 lines (589 loc) · 27.3 KB
/
_gaussian_mixture.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
"""Gaussian Mixture Model."""
# Author: Wei Xue <xuewei4d@gmail.com>
# Modified by Thierry Guillemot <thierry.guillemot.work@gmail.com>
# License: BSD 3 clause
import numpy as np
from scipy import linalg
from ._base import BaseMixture, _check_shape
from ..utils import check_array
from ..utils.extmath import row_norms
from ..utils.validation import _deprecate_positional_args
###############################################################################
# Gaussian mixture shape checkers used by the GaussianMixture class
def _check_weights(weights, n_components):
"""Check the user provided 'weights'.
Parameters
----------
weights : array-like, shape (n_components,)
The proportions of components of each mixture.
n_components : int
Number of components.
Returns
-------
weights : array, shape (n_components,)
"""
weights = check_array(weights, dtype=[np.float64, np.float32],
ensure_2d=False)
_check_shape(weights, (n_components,), 'weights')
# check range
if (any(np.less(weights, 0.)) or
any(np.greater(weights, 1.))):
raise ValueError("The parameter 'weights' should be in the range "
"[0, 1], but got max value %.5f, min value %.5f"
% (np.min(weights), np.max(weights)))
# check normalization
if not np.allclose(np.abs(1. - np.sum(weights)), 0.):
raise ValueError("The parameter 'weights' should be normalized, "
"but got sum(weights) = %.5f" % np.sum(weights))
return weights
def _check_means(means, n_components, n_features):
"""Validate the provided 'means'.
Parameters
----------
means : array-like, shape (n_components, n_features)
The centers of the current components.
n_components : int
Number of components.
n_features : int
Number of features.
Returns
-------
means : array, (n_components, n_features)
"""
means = check_array(means, dtype=[np.float64, np.float32], ensure_2d=False)
_check_shape(means, (n_components, n_features), 'means')
return means
def _check_precision_positivity(precision, covariance_type):
"""Check a precision vector is positive-definite."""
if np.any(np.less_equal(precision, 0.0)):
raise ValueError("'%s precision' should be "
"positive" % covariance_type)
def _check_precision_matrix(precision, covariance_type):
"""Check a precision matrix is symmetric and positive-definite."""
if not (np.allclose(precision, precision.T) and
np.all(linalg.eigvalsh(precision) > 0.)):
raise ValueError("'%s precision' should be symmetric, "
"positive-definite" % covariance_type)
def _check_precisions_full(precisions, covariance_type):
"""Check the precision matrices are symmetric and positive-definite."""
for prec in precisions:
_check_precision_matrix(prec, covariance_type)
def _check_precisions(precisions, covariance_type, n_components, n_features):
"""Validate user provided precisions.
Parameters
----------
precisions : array-like
'full' : shape of (n_components, n_features, n_features)
'tied' : shape of (n_features, n_features)
'diag' : shape of (n_components, n_features)
'spherical' : shape of (n_components,)
covariance_type : string
n_components : int
Number of components.
n_features : int
Number of features.
Returns
-------
precisions : array
"""
precisions = check_array(precisions, dtype=[np.float64, np.float32],
ensure_2d=False,
allow_nd=covariance_type == 'full')
precisions_shape = {'full': (n_components, n_features, n_features),
'tied': (n_features, n_features),
'diag': (n_components, n_features),
'spherical': (n_components,)}
_check_shape(precisions, precisions_shape[covariance_type],
'%s precision' % covariance_type)
_check_precisions = {'full': _check_precisions_full,
'tied': _check_precision_matrix,
'diag': _check_precision_positivity,
'spherical': _check_precision_positivity}
_check_precisions[covariance_type](precisions, covariance_type)
return precisions
###############################################################################
# Gaussian mixture parameters estimators (used by the M-Step)
def _estimate_gaussian_covariances_full(resp, X, nk, means, reg_covar):
"""Estimate the full covariance matrices.
Parameters
----------
resp : array-like, shape (n_samples, n_components)
X : array-like, shape (n_samples, n_features)
nk : array-like, shape (n_components,)
means : array-like, shape (n_components, n_features)
reg_covar : float
Returns
-------
covariances : array, shape (n_components, n_features, n_features)
The covariance matrix of the current components.
"""
n_components, n_features = means.shape
covariances = np.empty((n_components, n_features, n_features))
for k in range(n_components):
diff = X - means[k]
covariances[k] = np.dot(resp[:, k] * diff.T, diff) / nk[k]
covariances[k].flat[::n_features + 1] += reg_covar
return covariances
def _estimate_gaussian_covariances_tied(resp, X, nk, means, reg_covar):
"""Estimate the tied covariance matrix.
Parameters
----------
resp : array-like, shape (n_samples, n_components)
X : array-like, shape (n_samples, n_features)
nk : array-like, shape (n_components,)
means : array-like, shape (n_components, n_features)
reg_covar : float
Returns
-------
covariance : array, shape (n_features, n_features)
The tied covariance matrix of the components.
"""
avg_X2 = np.dot(X.T, X)
avg_means2 = np.dot(nk * means.T, means)
covariance = avg_X2 - avg_means2
covariance /= nk.sum()
covariance.flat[::len(covariance) + 1] += reg_covar
return covariance
def _estimate_gaussian_covariances_diag(resp, X, nk, means, reg_covar):
"""Estimate the diagonal covariance vectors.
Parameters
----------
responsibilities : array-like, shape (n_samples, n_components)
X : array-like, shape (n_samples, n_features)
nk : array-like, shape (n_components,)
means : array-like, shape (n_components, n_features)
reg_covar : float
Returns
-------
covariances : array, shape (n_components, n_features)
The covariance vector of the current components.
"""
avg_X2 = np.dot(resp.T, X * X) / nk[:, np.newaxis]
avg_means2 = means ** 2
avg_X_means = means * np.dot(resp.T, X) / nk[:, np.newaxis]
return avg_X2 - 2 * avg_X_means + avg_means2 + reg_covar
def _estimate_gaussian_covariances_spherical(resp, X, nk, means, reg_covar):
"""Estimate the spherical variance values.
Parameters
----------
responsibilities : array-like, shape (n_samples, n_components)
X : array-like, shape (n_samples, n_features)
nk : array-like, shape (n_components,)
means : array-like, shape (n_components, n_features)
reg_covar : float
Returns
-------
variances : array, shape (n_components,)
The variance values of each components.
"""
return _estimate_gaussian_covariances_diag(resp, X, nk,
means, reg_covar).mean(1)
def _estimate_gaussian_parameters(X, resp, reg_covar, covariance_type):
"""Estimate the Gaussian distribution parameters.
Parameters
----------
X : array-like, shape (n_samples, n_features)
The input data array.
resp : array-like, shape (n_samples, n_components)
The responsibilities for each data sample in X.
reg_covar : float
The regularization added to the diagonal of the covariance matrices.
covariance_type : {'full', 'tied', 'diag', 'spherical'}
The type of precision matrices.
Returns
-------
nk : array-like, shape (n_components,)
The numbers of data samples in the current components.
means : array-like, shape (n_components, n_features)
The centers of the current components.
covariances : array-like
The covariance matrix of the current components.
The shape depends of the covariance_type.
"""
nk = resp.sum(axis=0) + 10 * np.finfo(resp.dtype).eps
means = np.dot(resp.T, X) / nk[:, np.newaxis]
covariances = {"full": _estimate_gaussian_covariances_full,
"tied": _estimate_gaussian_covariances_tied,
"diag": _estimate_gaussian_covariances_diag,
"spherical": _estimate_gaussian_covariances_spherical
}[covariance_type](resp, X, nk, means, reg_covar)
return nk, means, covariances
def _compute_precision_cholesky(covariances, covariance_type):
"""Compute the Cholesky decomposition of the precisions.
Parameters
----------
covariances : array-like
The covariance matrix of the current components.
The shape depends of the covariance_type.
covariance_type : {'full', 'tied', 'diag', 'spherical'}
The type of precision matrices.
Returns
-------
precisions_cholesky : array-like
The cholesky decomposition of sample precisions of the current
components. The shape depends of the covariance_type.
"""
estimate_precision_error_message = (
"Fitting the mixture model failed because some components have "
"ill-defined empirical covariance (for instance caused by singleton "
"or collapsed samples). Try to decrease the number of components, "
"or increase reg_covar.")
if covariance_type == 'full':
n_components, n_features, _ = covariances.shape
precisions_chol = np.empty((n_components, n_features, n_features))
for k, covariance in enumerate(covariances):
try:
cov_chol = linalg.cholesky(covariance, lower=True)
except linalg.LinAlgError:
raise ValueError(estimate_precision_error_message)
precisions_chol[k] = linalg.solve_triangular(cov_chol,
np.eye(n_features),
lower=True).T
elif covariance_type == 'tied':
_, n_features = covariances.shape
try:
cov_chol = linalg.cholesky(covariances, lower=True)
except linalg.LinAlgError:
raise ValueError(estimate_precision_error_message)
precisions_chol = linalg.solve_triangular(cov_chol, np.eye(n_features),
lower=True).T
else:
if np.any(np.less_equal(covariances, 0.0)):
raise ValueError(estimate_precision_error_message)
precisions_chol = 1. / np.sqrt(covariances)
return precisions_chol
###############################################################################
# Gaussian mixture probability estimators
def _compute_log_det_cholesky(matrix_chol, covariance_type, n_features):
"""Compute the log-det of the cholesky decomposition of matrices.
Parameters
----------
matrix_chol : array-like
Cholesky decompositions of the matrices.
'full' : shape of (n_components, n_features, n_features)
'tied' : shape of (n_features, n_features)
'diag' : shape of (n_components, n_features)
'spherical' : shape of (n_components,)
covariance_type : {'full', 'tied', 'diag', 'spherical'}
n_features : int
Number of features.
Returns
-------
log_det_precision_chol : array-like, shape (n_components,)
The determinant of the precision matrix for each component.
"""
if covariance_type == 'full':
n_components, _, _ = matrix_chol.shape
log_det_chol = (np.sum(np.log(
matrix_chol.reshape(
n_components, -1)[:, ::n_features + 1]), 1))
elif covariance_type == 'tied':
log_det_chol = (np.sum(np.log(np.diag(matrix_chol))))
elif covariance_type == 'diag':
log_det_chol = (np.sum(np.log(matrix_chol), axis=1))
else:
log_det_chol = n_features * (np.log(matrix_chol))
return log_det_chol
def _estimate_log_gaussian_prob(X, means, precisions_chol, covariance_type):
"""Estimate the log Gaussian probability.
Parameters
----------
X : array-like, shape (n_samples, n_features)
means : array-like, shape (n_components, n_features)
precisions_chol : array-like
Cholesky decompositions of the precision matrices.
'full' : shape of (n_components, n_features, n_features)
'tied' : shape of (n_features, n_features)
'diag' : shape of (n_components, n_features)
'spherical' : shape of (n_components,)
covariance_type : {'full', 'tied', 'diag', 'spherical'}
Returns
-------
log_prob : array, shape (n_samples, n_components)
"""
n_samples, n_features = X.shape
n_components, _ = means.shape
# det(precision_chol) is half of det(precision)
log_det = _compute_log_det_cholesky(
precisions_chol, covariance_type, n_features)
if covariance_type == 'full':
log_prob = np.empty((n_samples, n_components))
for k, (mu, prec_chol) in enumerate(zip(means, precisions_chol)):
y = np.dot(X, prec_chol) - np.dot(mu, prec_chol)
log_prob[:, k] = np.sum(np.square(y), axis=1)
elif covariance_type == 'tied':
log_prob = np.empty((n_samples, n_components))
for k, mu in enumerate(means):
y = np.dot(X, precisions_chol) - np.dot(mu, precisions_chol)
log_prob[:, k] = np.sum(np.square(y), axis=1)
elif covariance_type == 'diag':
precisions = precisions_chol ** 2
log_prob = (np.sum((means ** 2 * precisions), 1) -
2. * np.dot(X, (means * precisions).T) +
np.dot(X ** 2, precisions.T))
elif covariance_type == 'spherical':
precisions = precisions_chol ** 2
log_prob = (np.sum(means ** 2, 1) * precisions -
2 * np.dot(X, means.T * precisions) +
np.outer(row_norms(X, squared=True), precisions))
return -.5 * (n_features * np.log(2 * np.pi) + log_prob) + log_det
class GaussianMixture(BaseMixture):
"""Gaussian Mixture.
Representation of a Gaussian mixture model probability distribution.
This class allows to estimate the parameters of a Gaussian mixture
distribution.
Read more in the :ref:`User Guide <gmm>`.
.. versionadded:: 0.18
Parameters
----------
n_components : int, defaults to 1.
The number of mixture components.
covariance_type : {'full' (default), 'tied', 'diag', 'spherical'}
String describing the type of covariance parameters to use.
Must be one of:
'full'
each component has its own general covariance matrix
'tied'
all components share the same general covariance matrix
'diag'
each component has its own diagonal covariance matrix
'spherical'
each component has its own single variance
tol : float, defaults to 1e-3.
The convergence threshold. EM iterations will stop when the
lower bound average gain is below this threshold.
reg_covar : float, defaults to 1e-6.
Non-negative regularization added to the diagonal of covariance.
Allows to assure that the covariance matrices are all positive.
max_iter : int, defaults to 100.
The number of EM iterations to perform.
n_init : int, defaults to 1.
The number of initializations to perform. The best results are kept.
init_params : {'kmeans', 'random'}, defaults to 'kmeans'.
The method used to initialize the weights, the means and the
precisions.
Must be one of::
'kmeans' : responsibilities are initialized using kmeans.
'random' : responsibilities are initialized randomly.
weights_init : array-like, shape (n_components, ), optional
The user-provided initial weights, defaults to None.
If it None, weights are initialized using the `init_params` method.
means_init : array-like, shape (n_components, n_features), optional
The user-provided initial means, defaults to None,
If it None, means are initialized using the `init_params` method.
precisions_init : array-like, optional.
The user-provided initial precisions (inverse of the covariance
matrices), defaults to None.
If it None, precisions are initialized using the 'init_params' method.
The shape depends on 'covariance_type'::
(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'
random_state : int, RandomState instance or None, optional (default=None)
Controls the random seed given to the method chosen to initialize the
parameters (see `init_params`).
In addition, it controls the generation of random samples from the
fitted distribution (see the method `sample`).
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
warm_start : bool, default to False.
If 'warm_start' is True, the solution of the last fitting is used as
initialization for the next call of fit(). This can speed up
convergence when fit is called several times on similar problems.
In that case, 'n_init' is ignored and only a single initialization
occurs upon the first call.
See :term:`the Glossary <warm_start>`.
verbose : int, default to 0.
Enable verbose output. If 1 then it prints the current
initialization and each iteration step. If greater than 1 then
it prints also the log probability and the time needed
for each step.
verbose_interval : int, default to 10.
Number of iteration done before the next print.
Attributes
----------
weights_ : array-like, shape (n_components,)
The weights of each mixture components.
means_ : array-like, shape (n_components, n_features)
The mean of each mixture component.
covariances_ : array-like
The covariance of each mixture component.
The shape depends on `covariance_type`::
(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'
precisions_ : array-like
The precision matrices for each component in the mixture. A precision
matrix is the inverse of a covariance matrix. A covariance matrix is
symmetric positive definite so the mixture of Gaussian can be
equivalently parameterized by the precision matrices. Storing the
precision matrices instead of the covariance matrices makes it more
efficient to compute the log-likelihood of new samples at test time.
The shape depends on `covariance_type`::
(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'
precisions_cholesky_ : array-like
The cholesky decomposition of the precision matrices of each mixture
component. A precision matrix is the inverse of a covariance matrix.
A covariance matrix is symmetric positive definite so the mixture of
Gaussian can be equivalently parameterized by the precision matrices.
Storing the precision matrices instead of the covariance matrices makes
it more efficient to compute the log-likelihood of new samples at test
time. The shape depends on `covariance_type`::
(n_components,) if 'spherical',
(n_features, n_features) if 'tied',
(n_components, n_features) if 'diag',
(n_components, n_features, n_features) if 'full'
converged_ : bool
True when convergence was reached in fit(), False otherwise.
n_iter_ : int
Number of step used by the best fit of EM to reach the convergence.
lower_bound_ : float
Lower bound value on the log-likelihood (of the training data with
respect to the model) of the best fit of EM.
See Also
--------
BayesianGaussianMixture : Gaussian mixture model fit with a variational
inference.
"""
@_deprecate_positional_args
def __init__(self, n_components=1, *, covariance_type='full', tol=1e-3,
reg_covar=1e-6, max_iter=100, n_init=1, init_params='kmeans',
weights_init=None, means_init=None, precisions_init=None,
random_state=None, warm_start=False,
verbose=0, verbose_interval=10):
super().__init__(
n_components=n_components, tol=tol, reg_covar=reg_covar,
max_iter=max_iter, n_init=n_init, init_params=init_params,
random_state=random_state, warm_start=warm_start,
verbose=verbose, verbose_interval=verbose_interval)
self.covariance_type = covariance_type
self.weights_init = weights_init
self.means_init = means_init
self.precisions_init = precisions_init
def _check_parameters(self, X):
"""Check the Gaussian mixture parameters are well defined."""
_, n_features = X.shape
if self.covariance_type not in ['spherical', 'tied', 'diag', 'full']:
raise ValueError("Invalid value for 'covariance_type': %s "
"'covariance_type' should be in "
"['spherical', 'tied', 'diag', 'full']"
% self.covariance_type)
if self.weights_init is not None:
self.weights_init = _check_weights(self.weights_init,
self.n_components)
if self.means_init is not None:
self.means_init = _check_means(self.means_init,
self.n_components, n_features)
if self.precisions_init is not None:
self.precisions_init = _check_precisions(self.precisions_init,
self.covariance_type,
self.n_components,
n_features)
def _initialize(self, X, resp):
"""Initialization of the Gaussian mixture parameters.
Parameters
----------
X : array-like, shape (n_samples, n_features)
resp : array-like, shape (n_samples, n_components)
"""
n_samples, _ = X.shape
weights, means, covariances = _estimate_gaussian_parameters(
X, resp, self.reg_covar, self.covariance_type)
weights /= n_samples
self.weights_ = (weights if self.weights_init is None
else self.weights_init)
self.means_ = means if self.means_init is None else self.means_init
if self.precisions_init is None:
self.covariances_ = covariances
self.precisions_cholesky_ = _compute_precision_cholesky(
covariances, self.covariance_type)
elif self.covariance_type == 'full':
self.precisions_cholesky_ = np.array(
[linalg.cholesky(prec_init, lower=True)
for prec_init in self.precisions_init])
elif self.covariance_type == 'tied':
self.precisions_cholesky_ = linalg.cholesky(self.precisions_init,
lower=True)
else:
self.precisions_cholesky_ = self.precisions_init
def _m_step(self, X, log_resp):
"""M step.
Parameters
----------
X : array-like, shape (n_samples, n_features)
log_resp : array-like, shape (n_samples, n_components)
Logarithm of the posterior probabilities (or responsibilities) of
the point of each sample in X.
"""
n_samples, _ = X.shape
self.weights_, self.means_, self.covariances_ = (
_estimate_gaussian_parameters(X, np.exp(log_resp), self.reg_covar,
self.covariance_type))
self.weights_ /= n_samples
self.precisions_cholesky_ = _compute_precision_cholesky(
self.covariances_, self.covariance_type)
def _estimate_log_prob(self, X):
return _estimate_log_gaussian_prob(
X, self.means_, self.precisions_cholesky_, self.covariance_type)
def _estimate_log_weights(self):
return np.log(self.weights_)
def _compute_lower_bound(self, _, log_prob_norm):
return log_prob_norm
def _get_parameters(self):
return (self.weights_, self.means_, self.covariances_,
self.precisions_cholesky_)
def _set_parameters(self, params):
(self.weights_, self.means_, self.covariances_,
self.precisions_cholesky_) = params
# Attributes computation
_, n_features = self.means_.shape
if self.covariance_type == 'full':
self.precisions_ = np.empty(self.precisions_cholesky_.shape)
for k, prec_chol in enumerate(self.precisions_cholesky_):
self.precisions_[k] = np.dot(prec_chol, prec_chol.T)
elif self.covariance_type == 'tied':
self.precisions_ = np.dot(self.precisions_cholesky_,
self.precisions_cholesky_.T)
else:
self.precisions_ = self.precisions_cholesky_ ** 2
def _n_parameters(self):
"""Return the number of free parameters in the model."""
_, n_features = self.means_.shape
if self.covariance_type == 'full':
cov_params = self.n_components * n_features * (n_features + 1) / 2.
elif self.covariance_type == 'diag':
cov_params = self.n_components * n_features
elif self.covariance_type == 'tied':
cov_params = n_features * (n_features + 1) / 2.
elif self.covariance_type == 'spherical':
cov_params = self.n_components
mean_params = n_features * self.n_components
return int(cov_params + mean_params + self.n_components - 1)
def bic(self, X):
"""Bayesian information criterion for the current model on the input X.
Parameters
----------
X : array of shape (n_samples, n_dimensions)
Returns
-------
bic : float
The lower the better.
"""
return (-2 * self.score(X) * X.shape[0] +
self._n_parameters() * np.log(X.shape[0]))
def aic(self, X):
"""Akaike information criterion for the current model on the input X.
Parameters
----------
X : array of shape (n_samples, n_dimensions)
Returns
-------
aic : float
The lower the better.
"""
return -2 * self.score(X) * X.shape[0] + 2 * self._n_parameters()