-
Notifications
You must be signed in to change notification settings - Fork 4
/
FLAME.py
263 lines (233 loc) · 12.5 KB
/
FLAME.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# -*- coding: utf-8 -*-
#
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# Using this computer program means that you agree to the terms
# in the LICENSE file included with this software distribution.
# Any use not explicitly granted by the LICENSE is prohibited.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# For comments or questions, please email us at deca@tue.mpg.de
# For commercial licensing contact, please contact ps-license@tuebingen.mpg.de
import torch
import torch.nn as nn
import numpy as np
import pickle
import torch.nn.functional as F
from lbs import lbs, batch_rodrigues, vertices2landmarks, rot_mat_to_euler
def to_tensor(array, dtype=torch.float32):
if 'torch.tensor' not in str(type(array)):
return torch.tensor(array, dtype=dtype)
def to_np(array, dtype=np.float32):
if 'scipy.sparse' in str(type(array)):
array = array.todense()
return np.array(array, dtype=dtype)
class Struct(object):
def __init__(self, **kwargs):
for key, val in kwargs.items():
setattr(self, key, val)
class FLAME(nn.Module):
"""
borrowed from https://github.com/soubhiksanyal/FLAME_PyTorch/blob/master/FLAME.py
Given flame parameters this class generates a differentiable FLAME function
which outputs the a mesh and 2D/3D facial landmarks
"""
def __init__(self, config):
super(FLAME, self).__init__()
print("creating the FLAME Decoder")
with open(config.flame_model_path, 'rb') as f:
ss = pickle.load(f, encoding='latin1')
flame_model = Struct(**ss)
self.dtype = torch.float32
self.register_buffer('faces_tensor', to_tensor(to_np(flame_model.f, dtype=np.int64), dtype=torch.long))
# The vertices of the template model
self.register_buffer('v_template', to_tensor(to_np(flame_model.v_template), dtype=self.dtype))
# The shape components and expression
shapedirs = to_tensor(to_np(flame_model.shapedirs), dtype=self.dtype)
shapedirs = torch.cat([shapedirs[:,:,:config.n_shape], shapedirs[:,:,300:300+config.n_exp]], 2)
self.register_buffer('shapedirs', shapedirs)
# The pose components
num_pose_basis = flame_model.posedirs.shape[-1]
posedirs = np.reshape(flame_model.posedirs, [-1, num_pose_basis]).T
self.register_buffer('posedirs', to_tensor(to_np(posedirs), dtype=self.dtype))
#
self.register_buffer('J_regressor', to_tensor(to_np(flame_model.J_regressor), dtype=self.dtype))
parents = to_tensor(to_np(flame_model.kintree_table[0])).long(); parents[0] = -1
self.register_buffer('parents', parents)
self.register_buffer('lbs_weights', to_tensor(to_np(flame_model.weights), dtype=self.dtype))
# Fixing Eyeball and neck rotation
default_eyball_pose = torch.zeros([1, 6], dtype=self.dtype, requires_grad=False)
self.register_parameter('eye_pose', nn.Parameter(default_eyball_pose,
requires_grad=False))
default_neck_pose = torch.zeros([1, 3], dtype=self.dtype, requires_grad=False)
self.register_parameter('neck_pose', nn.Parameter(default_neck_pose,
requires_grad=False))
# Static and Dynamic Landmark embeddings for FLAME
lmk_embeddings = np.load(config.flame_lmk_embedding_path, allow_pickle=True, encoding='latin1')
lmk_embeddings = lmk_embeddings[()]
self.register_buffer('lmk_faces_idx', torch.from_numpy(lmk_embeddings['static_lmk_faces_idx']).long())
self.register_buffer('lmk_bary_coords', torch.from_numpy(lmk_embeddings['static_lmk_bary_coords']).to(self.dtype))
self.register_buffer('dynamic_lmk_faces_idx', lmk_embeddings['dynamic_lmk_faces_idx'].long())
self.register_buffer('dynamic_lmk_bary_coords', lmk_embeddings['dynamic_lmk_bary_coords'].to(self.dtype))
self.register_buffer('full_lmk_faces_idx', torch.from_numpy(lmk_embeddings['full_lmk_faces_idx']).long())
self.register_buffer('full_lmk_bary_coords', torch.from_numpy(lmk_embeddings['full_lmk_bary_coords']).to(self.dtype))
neck_kin_chain = []; NECK_IDX=1
curr_idx = torch.tensor(NECK_IDX, dtype=torch.long)
while curr_idx != -1:
neck_kin_chain.append(curr_idx)
curr_idx = self.parents[curr_idx]
self.register_buffer('neck_kin_chain', torch.stack(neck_kin_chain))
def _find_dynamic_lmk_idx_and_bcoords(self, pose, dynamic_lmk_faces_idx,
dynamic_lmk_b_coords,
neck_kin_chain, dtype=torch.float32):
"""
Selects the face contour depending on the reletive position of the head
Input:
vertices: N X num_of_vertices X 3
pose: N X full pose
dynamic_lmk_faces_idx: The list of contour face indexes
dynamic_lmk_b_coords: The list of contour barycentric weights
neck_kin_chain: The tree to consider for the relative rotation
dtype: Data type
return:
The contour face indexes and the corresponding barycentric weights
"""
batch_size = pose.shape[0]
aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1,
neck_kin_chain)
rot_mats = batch_rodrigues(
aa_pose.view(-1, 3), dtype=dtype).view(batch_size, -1, 3, 3)
rel_rot_mat = torch.eye(3, device=pose.device,
dtype=dtype).unsqueeze_(dim=0).expand(batch_size, -1, -1)
for idx in range(len(neck_kin_chain)):
rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat)
y_rot_angle = torch.round(
torch.clamp(rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi,
max=39)).to(dtype=torch.long)
neg_mask = y_rot_angle.lt(0).to(dtype=torch.long)
mask = y_rot_angle.lt(-39).to(dtype=torch.long)
neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle)
y_rot_angle = (neg_mask * neg_vals +
(1 - neg_mask) * y_rot_angle)
dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx,
0, y_rot_angle)
dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords,
0, y_rot_angle)
return dyn_lmk_faces_idx, dyn_lmk_b_coords
def _vertices2landmarks(self, vertices, faces, lmk_faces_idx, lmk_bary_coords):
"""
Calculates landmarks by barycentric interpolation
Input:
vertices: torch.tensor NxVx3, dtype = torch.float32
The tensor of input vertices
faces: torch.tensor (N*F)x3, dtype = torch.long
The faces of the mesh
lmk_faces_idx: torch.tensor N X L, dtype = torch.long
The tensor with the indices of the faces used to calculate the
landmarks.
lmk_bary_coords: torch.tensor N X L X 3, dtype = torch.float32
The tensor of barycentric coordinates that are used to interpolate
the landmarks
Returns:
landmarks: torch.tensor NxLx3, dtype = torch.float32
The coordinates of the landmarks for each mesh in the batch
"""
# Extract the indices of the vertices for each face
# NxLx3
batch_size, num_verts = vertices.shape[:dd2]
lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view(
1, -1, 3).view(batch_size, lmk_faces_idx.shape[1], -1)
lmk_faces += torch.arange(batch_size, dtype=torch.long).view(-1, 1, 1).to(
device=vertices.device) * num_verts
lmk_vertices = vertices.view(-1, 3)[lmk_faces]
landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords])
return landmarks
def seletec_3d68(self, vertices):
landmarks3d = vertices2landmarks(vertices, self.faces_tensor,
self.full_lmk_faces_idx.repeat(vertices.shape[0], 1),
self.full_lmk_bary_coords.repeat(vertices.shape[0], 1, 1))
return landmarks3d
def forward(self, shape_params=None, expression_params=None, pose_params=None, eye_pose_params=None):
"""
Input:
shape_params: N X number of shape parameters
expression_params: N X number of expression parameters
pose_params: N X number of pose parameters (6)
return:d
vertices: N X V X 3
landmarks: N X number of landmarks X 3
"""
batch_size = shape_params.shape[0]
if eye_pose_params is None:
eye_pose_params = self.eye_pose.expand(batch_size, -1)
betas = torch.cat([shape_params, expression_params], dim=1)
full_pose = torch.cat([pose_params[:, :3], self.neck_pose.expand(batch_size, -1), pose_params[:, 3:], eye_pose_params], dim=1)
template_vertices = self.v_template.unsqueeze(0).expand(batch_size, -1, -1)
vertices, _ = lbs(betas, full_pose, template_vertices,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, dtype=self.dtype)
lmk_faces_idx = self.lmk_faces_idx.unsqueeze(dim=0).expand(batch_size, -1)
lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).expand(batch_size, -1, -1)
dyn_lmk_faces_idx, dyn_lmk_bary_coords = self._find_dynamic_lmk_idx_and_bcoords(
full_pose, self.dynamic_lmk_faces_idx,
self.dynamic_lmk_bary_coords,
self.neck_kin_chain, dtype=self.dtype)
lmk_faces_idx = torch.cat([dyn_lmk_faces_idx, lmk_faces_idx], 1)
lmk_bary_coords = torch.cat([dyn_lmk_bary_coords, lmk_bary_coords], 1)
landmarks2d = vertices2landmarks(vertices, self.faces_tensor,
lmk_faces_idx,
lmk_bary_coords)
bz = vertices.shape[0]
landmarks3d = vertices2landmarks(vertices, self.faces_tensor,
self.full_lmk_faces_idx.repeat(bz, 1),
self.full_lmk_bary_coords.repeat(bz, 1, 1))
print(vertices.shape)
return vertices, landmarks2d, landmarks3d
class FLAMETex(nn.Module):
"""
FLAME texture:
https://github.com/TimoBolkart/TF_FLAME/blob/ade0ab152300ec5f0e8555d6765411555c5ed43d/sample_texture.py#L64
FLAME texture converted from BFM:
https://github.com/TimoBolkart/BFM_to_FLAME
"""
def __init__(self, config):
super(FLAMETex, self).__init__()
if config.tex_type == 'BFM':
mu_key = 'MU'
pc_key = 'PC'
n_pc = 199
tex_path = config.tex_path
tex_space = np.load(tex_path)
texture_mean = tex_space[mu_key].reshape(1, -1)
texture_basis = tex_space[pc_key].reshape(-1, n_pc)
elif config.tex_type == 'FLAME':
mu_key = 'mean'
pc_key = 'tex_dir'
n_pc = 200
tex_path = config.flame_tex_path
tex_space = np.load(tex_path)
texture_mean = tex_space[mu_key].reshape(1, -1)/255.
texture_basis = tex_space[pc_key].reshape(-1, n_pc)/255.
else:
print('texture type ', config.tex_type, 'not exist!')
raise NotImplementedError
n_tex = config.n_tex
num_components = texture_basis.shape[1]
texture_mean = torch.from_numpy(texture_mean).float()[None,...]
texture_basis = torch.from_numpy(texture_basis[:,:n_tex]).float()[None,...]
self.register_buffer('texture_mean', texture_mean)
self.register_buffer('texture_basis', texture_basis)
def forward(self, texcode):
'''
texcode: [batchsize, n_tex]
texture: [bz, 3, 256, 256], range: 0-1
'''
texture = self.texture_mean + (self.texture_basis*texcode[:,None,:]).sum(-1)
texture = texture.reshape(texcode.shape[0], 512, 512, 3).permute(0,3,1,2)
texture = F.interpolate(texture, [256, 256])
texture = texture[:,[2,1,0], :,:]
return texture