-
Notifications
You must be signed in to change notification settings - Fork 0
/
Chapter1_Uniformization.tex
3504 lines (3177 loc) · 169 KB
/
Chapter1_Uniformization.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[Thesis]{subfiles}
\begin{document}
%\setkeys{Gin}{draft=false}
\chapter{Discrete uniformization of Riemann surfaces}
\label{chp:uniformization}
\section{Introduction}
\begin{figure}
\centering
\resizebox{0.9\textwidth}{!}{
\includegraphics[height=10cm]{introduction/genus0_image.pdf}
\quad
\includegraphics[height=10cm]{introduction/genus0_domain.pdf}
}
\resizebox{0.9\textwidth}{!}{
\includegraphics[height=10cm]{introduction/genus1_image.pdf}
\quad
\raisebox{0.5cm}{\includegraphics[height=9cm]{introduction/genus1_domain.pdf}}
}
\resizebox{0.9\textwidth}{!}{
\includegraphics[height=10cm]{introduction/genus3_image.pdf}
\quad
\includegraphics[height=10cm]{introduction/genus3_domain.pdf}
}
\setstretch{0.0}{\scriptsize\tt data/introduction/genus\{0/1/3\}\_data.xml}
\caption{
Uniformization of compact Riemann surfaces.
The uniformization of spheres is treated in
Section~\ref{sec:spheres}. Tori are covered in
Section~\ref{sec:tori}, and Section~\ref{sec:higher_genus} is
concerned with surfaces of higher genus.
}
\label{fig:intro_uniformization}
\end{figure}
In this chapter we investigate various applications of discrete conformal maps.
It is a joint effort of Alexander Bobenko, Boris Springborn, and the author. Most of its content is also available in the article~\cite{BobSechSpr}.
We build upon the work of Bobenko, Pinkall, and Springborn~\cite{BPS2015:dconf} and Springborn, Schr\"{o}der, and Pinkall~\cite{Springborn2008}.
We present examples for uniformizations of Riemann surfaces of genus $0$, $1$, and $g>1$ based on this theory, see Figure~\ref{fig:intro_uniformization}.
The notion of discrete conformal equivalence for polyhedral surfaces
is based on a simple definition: Two polyhedral surfaces are
discretely conformally equivalent if the edge lengths are related by
scale factors assigned to the vertices. It leads to a surprisingly
rich theory~\cite{Luo2004:Yamabe, BPS2015:dconf, Luo-Uniformization, Luo-Uniformization_II}.
We extend the notion of discrete conformal equivalence from
triangulated surfaces to polyhedral surfaces with faces that are
inscribed in circles. The basic definitions and their immediate
consequences are discussed in Section~\ref{sec:basic_definitions}.
In Section~\ref{sec:vari-princ}, we generalize a variational principle
for discretely conformally equivalent
triangulations~\cite{BPS2015:dconf} to the polyhedral setting. This
variational principle is the main tool for all our numerical
calculations. It is also the basis for our uniqueness proof for
discrete conformal mapping problems
(Theorem~\ref{thm:uniqueness}).
Section~\ref{sec:quadrangulations} is concerned with the special case
of quadrilateral meshes. We discuss the emergence of
orthogonal circle patterns, a peculiar necessary condition for the
existence of solutions for boundary angle problems, and we extend the
method of constructing discrete Riemann maps from triangulations to
quadrangulations.
In Section~\ref{sec:multiply_connected}, we briefly discuss discrete
conformal maps from multiply connected domains to circle domains, and
special cases in which we can map to slit domains.
Section~\ref{sec:spheres} deals with conformal mappings onto the
sphere. We generalize the method for triangulations to
quadrangulations, and we explain how the spherical version of the
variational principle can in some cases be used for numerical
calculations although the corresponding functional is not convex.
Section~\ref{sec:tori} is concerned with the uniformization of tori,
i.e., the representation of Riemann surfaces as a quotient space of
the complex plane modulo a period lattice. We consider Riemann
surfaces represented as immersed surfaces in $\R^{3}$, and as elliptic
curves. We conduct numerical experiments to test the conjectured
convergence of discrete conformal maps. We consider the difference
between the true modulus of an elliptic curve (which can be calculated
using hypergeometric functions) and the modulus determined by discrete
uniformization, and we estimate the asymptotic dependence of this
error on the number of vertices.
In Section~\ref{sec:higher_genus}, we consider the Fuchsian
uniformization of Riemann surfaces represented in different forms. We
consider immersed surfaces in $\R^{3}$ (and $S^{3}$), hyperelliptic
curves, and Riemann surfaces represented as a quotient of $\Chat$
modulo a classical Schottky group. That is, we convert from Schottky
uniformization to Fuchsian uniformization. The Section ends with two
extended examples demonstrating, among other things, a remarkable
geometric characterization of hyperelliptic surfaces due to Schmutz
Schaller.
This text is accompanied by a compact disk which contains the data for all of the examples presented in this part of the work.
Where applicable, we give the path to the data on the disk directly under the corresponding figure.
We describe the usage of the software and the XML data format that was used to create all the results in Chapter~\ref{chp:conformallab}.
\section{Discrete conformal equivalence of cyclic polyhedral surfaces}
\label{sec:basic_definitions}
\subsection{Cyclic polyhedral surfaces }
A \emph{euclidean polyhedral surface} is a surface obtained from
gluing euclidean polygons along their edges. (A \emph{surface} is a
connected two-dimensional manifold, possibly with boundary.) In other
words, a euclidean polyhedral surface is a surface equipped with,
first, an intrinsic metric that is flat except at isolated points
where it has cone-like singularities, and, second, the structure of a
CW complex with geodesic edges. The set of vertices contains all
cone-like singularities. If the surface has a boundary, the boundary
is polygonal and the set of vertices contains all corners of the
boundary.
\emph{Hyperbolic polyhedral surfaces} and \emph{spherical polyhedral
surfaces} are defined analogously. They are glued from polygons in
the hyperbolic and elliptic planes, respectively. Their metric is
locally hyperbolic or spherical, except at cone-like singularities.
We will only be concerned with polyhedral surfaces whose faces are all
cyclic, i.e., inscribed in circles. We call them \emph{cyclic
polyhedral surfaces}. More precisely, we require the polygons to be
cyclic before they are glued together. It is not required that the
circumcircles persist after gluing; they may be disturbed by cone-like
singularities. A polygon in the hyperbolic plane is considered cyclic
if it is inscribed in a curve of constant curvature. This may be a
circle (the locus of points at constant distance from its center), a
horocycle, or a curve at constant distance from a geodesic.
A \emph{triangulated surface}, or \emph{triangulation} for short, is a
polyhedral surface all of whose faces are triangles. All
triangulations are cyclic.
\subsection{Notation}
\label{sec:notation}
We will denote the sets of vertices, edges, and faces of a CW complex~$\Sigma$ by $V_{\Sigma}$, $E_{\Sigma}$, and $F_{\Sigma}$, and we will often omit the subscript when there is no danger of confusion.
For notational convenience, we require all CW complexes to be \emph{strongly regular}.
This means that we require that faces are not glued to themselves along edges or at vertices, that two faces are not glued together along more than one edge or one vertex, and that edges have distinct end-points and two edges have at most one endpoint in common.
This allows us to label edges and faces by their vertices.
We will write $\mathit{ij}\in E$ for the edge with vertices $i,j\in V$ and $\mathit{ijkl}\in F$ for the face with vertices $i,j,k,l\in V$.
We will always list the vertices of a face in the correct cyclic order, so that for example the face $\mathit{ijkl}$ has edges $\mathit{ij}$, $\mathit{jk}$, $\mathit{kl}$, and $\mathit{li}$.
The only reason for restricting our discussion to strongly regular CW complexes is to be able to use this simple notation.
Everything we discuss applies also to general CW complexes.
% We will denote the sets of boundary vertices and edges by $\Vbdy$ and
% $\Ebdy$, and the complementary sets of interior vertices and edges by
% $\Eint$ and $\Vint$. In some formulas we need to iterate over directed
% edges. We denote the set of directed edges by $\vect{E}$. For each
% edge $\mathit{ij}\in E$ the set $\vect{E}$ contains two directed edges
% $\mathit{ij}\in \vect{E}$ and $\mathit{ji}\in \vect{E}$.
\subsection{Discrete metrics}
\label{sec:discrete_metrics}
The \emph{discrete metric} of a euclidean (or hyperbolic or spherical)
cyclic polyhedral surface $\Sigma$ is the function
$\ell:E_{\Sigma}\rightarrow\R_{>0}$ that assigns to each edge ${\it ij}
\in E_{\Sigma}$ its length $\ell_{\it ij}$. It satisfies the polygon
inequalities (one side is shorter than the sum of the others):
\begin{equation}
\label{eq:polygon_ineq}
\left.
\quad
\begin{aligned}
-\ell_{i_{1}i_{2}}+\ell_{i_{2}i_{3}}+&\ldots+\ell_{i_{n-1}i_{n}}
>0\\
\ell_{i_{1}i_{2}}-\ell_{i_{2}i_{3}}+&\ldots+\ell_{i_{n-1}i_{n}}
>0\\
&\vdots\\
\ell_{i_{1}i_{2}}+\ell_{i_{2}i_{3}}+&\ldots-\ell_{i_{n-1}i_{n}}
>0
\end{aligned}
\quad
\right\}
\quad
\text{for all $i_{1}i_{2}\ldots i_{n}\in F_{\Sigma}$}
\end{equation}
In the case of spherical polyhedral surfaces, we also require that
\begin{equation}
\label{eq:polygon_ineq_spherical}
\ell_{i_{1}i_{2}}+\ell_{i_{2}i_{3}}+\ldots+\ell_{i_{n-1}i_{n}}
<2\pi.
\end{equation}
The polygon inequalities~\eqref{eq:polygon_ineq} are necessary and
sufficient for the existence of a unique cyclic euclidean polygon and
a unique cyclic hyperbolic polygon with the given edge
lengths. Together with inequality~\eqref{eq:polygon_ineq_spherical}
they are necessary and sufficient for the existence of a unique cyclic
spherical polygon. For a new proof of these elementary geometric
facts, see~\cite{KSS15}. Thus, a discrete metric determines the geometry of
a cyclic polyhedral surface:
\begin{propdef}
\label{def:sigma_ell_g}
If $\Sigma$ is a surface with the structure of a CW~complex and a
function $\ell:E_{\Sigma}\rightarrow\R_{>0}$ satisfies the polygon
inequalities~\eqref{eq:polygon_ineq}, then there is a unique
euclidean cyclic polyhedral surface and also a unique hyperbolic
cyclic polyhedral surface with CW~complex~$\Sigma$ and discrete
metric~$\ell$. If $\ell$ also satisfies the
inequalities~\eqref{eq:polygon_ineq_spherical}, then there is a
unique spherical cyclic polyhedral surface with CW~complex~$\Sigma$
and discrete metric~$\ell$.
We will denote the euclidean, hyperbolic, and spherical polyhedral
surface with CW~complex $\Sigma$ and discrete metric $\ell$ by\/
$(\Sigma,\ell)_{\euc}$, $(\Sigma,\ell)_{\hyp}$, and\/
$(\Sigma,\ell)_{\sph}$, respectively.
\end{propdef}
\subsection{Discrete conformal equivalence}
\label{sec:discr-conf-equiv}
We extend the definition of discrete conformal equivalence from
triangulations~\cite{Luo2004:Yamabe,BPS2015:dconf} to cyclic
polyhedral surfaces in a straightforward way
(Definition~\ref{def:dconf}). While some aspects of the theory carry
over to the more general setting (e.g., M{\"o}bius invariance,
Proposition~\ref{prop:Moebius_inv}), others do not, like the
characterization of discretely conformally equivalent triangulations
in terms of length cross-ratios (Section~\ref{sec:triangulations}). We
will discuss similar characterizations for polyhedral surfaces with
$2$-colorable vertices and the particular case of quadrilateral faces
in Sections~\ref{sec:even_cycles} and~\ref{sec:quads}.
We define discrete conformal equivalence only for polyhedral surfaces
that are combinatorially equivalent (see
Remark~\ref{rem:change_combi}). Thus, we may assume that the surfaces
share the same CW complex~$\Sigma$ equipped with different metrics
$\ell$, $\ellt$.
\begin{definition}
\label{def:dconf}
\emph{Discrete conformal equivalence} is an equivalence relation on
the set of cyclic polyhedral surfaces defined as follows:
\begin{compactitem}[$\bullet$]
\item Two \emph{euclidean} cyclic polyhedral surfaces
$(\Sigma,\ell)_{\euc}$ and $(\Sigma,\ellt)_{\euc}$ are
\emph{discretely conformally equivalent} if there exists a
function $u:V_{\Sigma}\rightarrow\R$ such that
\begin{equation}
\label{eq:tilde_ell_euc}
\ellt_\mathit{ij}=e^{\frac{1}{2}(u_{i}+u_{j})}\ell_\mathit{ij}.
\end{equation}
\item Two \emph{hyperbolic} cyclic polyhedral surfaces
$(\Sigma,\ell)_{\hyp}$ and $(\Sigma,\ellt)_{\hyp}$ are \emph{discretely
conformally equivalent} if there exists a function
$u:V_{\Sigma}\rightarrow\R$ such that
\begin{equation}
\label{eq:tilde_ell_hyp}
\sinh\Big(\frac{\ellt_\mathit{ij}}{2}\Big)
= e^{\frac{1}{2}(u_{i}+u_{j})}\,
\sinh\Big(\frac{\ell_\mathit{ij}}{2}\Big).
\end{equation}
\item Two \emph{spherical} cyclic polyhedral surfaces
$(\Sigma,\ell)_{\sph}$ and $(\Sigma,\ellt)_{\sph}$ are \emph{discretely
conformally equivalent} if there exists a function
$u:V_{\Sigma}\rightarrow\R$ such that
\begin{equation}
\label{eq:tilde_ell_sph}
\sin\Big(\frac{\ellt_\mathit{ij}}{2}\Big)
= e^{\frac{1}{2}(u_{i}+u_{j})}\,
\sin\Big(\frac{\ell_\mathit{ij}}{2}\Big).
\end{equation}
\end{compactitem}
We will also consider mixed versions:
\begin{compactitem}[$\bullet$]
\item A euclidean cyclic polyhedral surface $(\Sigma,\ell)_{\euc}$ and a
hyperbolic cyclic polyhedral surface $(\Sigma,\ellt)_{\hyp}$ are
discretely conformally equivalent if
\begin{equation}
\label{eq:tilde_ell_hyp_euc}
\sinh\Big(\frac{\ellt_\mathit{ij}}{2}\Big)
= e^{\frac{1}{2}(u_{i}+u_{j})}\ell_\mathit{ij}.
\end{equation}
\item A euclidean cyclic polyhedral surface $(\Sigma,\ell)_{\euc}$ and a spherical cyclic
polyhedral surface $(\Sigma,\ellt)_{\sph}$ are discretely conformally
equivalent if
\begin{equation}\label{eq:tilde_ell_sph_euc}
\sin\Big(\frac{\ellt_\mathit{ij}}{2}\Big)
= e^{\frac{1}{2}(u_{i}+u_{j})}\ell_\mathit{ij}.
\end{equation}
\item A hyperbolic cyclic polyhedral surface $(\Sigma,\ell)_{\hyp}$ and a spherical cyclic
polyhedral surface $(\Sigma,\ellt)_{\sph}$ are discretely conformally
equivalent if
\begin{equation}\label{eq:tilde_ell_sph_hyp}
\sin\Big(\frac{\ellt_\mathit{ij}}{2}\Big)
= e^{\frac{1}{2}(u_{i}+u_{j})}\sinh\Big(\frac{\ell_\mathit{ij}}{2}\Big).
\end{equation}
\end{compactitem}
\end{definition}
\begin{remark}
\label{rem:chords}
Note that relation~\eqref{eq:tilde_ell_sph} for spherical edge
lengths is equivalent to relation~\eqref{eq:tilde_ell_euc} for the
euclidean lengths of the chords in the ambient $\R^{3}$ of the
sphere (see Figure~\ref{fig:geometries}, left).
\begin{figure}
\begin{minipage}[b]{0.6\linewidth}
\centering \resizebox{\textwidth}{!}{
\input{figures/geometries/spherical.pdf_t}
\input{figures/geometries/hyperbolic.pdf_t} }
\caption{Spherical and hyperbolic chords.}
\label{fig:geometries}
\end{minipage}
\hfill
\begin{minipage}[b]{0.33\linewidth}
\centering
\input{figures/lengthcrossratio.pdf_t}
\caption{Length cross-ratio.}
\label{fig:lcr}
\end{minipage}
\end{figure}
Likewise, relation~\eqref{eq:tilde_ell_hyp} for hyperbolic edge
lengths is equivalent to~\eqref{eq:tilde_ell_euc} for the euclidean
lengths of the chords in the ambient $\R^{2,1}$ of the hyperboloid
model of the hyperbolic plane (see Figure~\ref{fig:geometries},
right).
\end{remark}
\begin{remark}
\label{rem:change_combi}
For triangulations, the definition of discrete conformal equivalence
has been extended to meshes that are not combinatorially
equivalent~\cite[Definition 5.1.4]{BPS2015:dconf}
\cite{Luo-Uniformization, Luo-Uniformization_II}. It is not
clear whether or how the following definitions for cyclic polyhedral
surfaces can be extended to combinatorially inequivalent CW
complexes.
\end{remark}
% \begin{remark*}[Orientation]
% We need and will only consider oriented surfaces because the
% solutions of the conformal mapping problems that we treat are
% sufficiently unique. The situation is like in the classical smooth
% case: While one could consider the uniformization of nonorientable
% Riemann surfaces (by allowing anticonformal chart transition
% functions and discrete groups containing orientation reversing
% M\"obius transformations), this would not lead to anything
% essentially new: Due to uniqueness, the uniformization of an
% unorientable surface lifts to the oriented double cover.
% \end{remark*}
The discrete conformal class of a cyclic polyhedral surface embedded
in $n$-dimensional euclidean space is invariant under M{\"o}bius
transformations of the ambient space:
\begin{proposition}[M{\"o}bius invariance]
\label{prop:Moebius_inv}
Suppose $P$ and $\tilde P$ are two combinatorially equivalent
euclidean cyclic polyhedral surfaces embedded in $\R^{n}$ (with
straight edges and faces), and suppose there is a M{\"o}bius
transformation of\/ $\R^{n}\cup\{\infty\}$ that maps the vertices of
$P$ to the corresponding vertices of $\tilde P$. Then $P$ and
$\tilde P$ are discretely conformally equivalent.
\end{proposition}
\noindent%
Note that only vertices are related by the M{\"o}bius transformation,
not edges and faces, which remain straight. The simple proof for the
case of triangulations~\cite{BPS2015:dconf} carries over without change.
\subsection{Triangulations: Characterization by length cross-ratios}
\label{sec:triangulations}
For euclidean triangulations, there is an alternative characterization
of conformal equivalence in terms of length
cross-ratios~\cite{BPS2015:dconf}. We review the basic facts in this
section.
For two adjacent triangles ${\it ijk}\in F$ and ${\it jil}\in F$ (see Figure~\ref{fig:lcr}), the
\emph{length cross-ratio} of the common interior edge ${\it ij}\in E$ is defined
as
\begin{equation}
\label{eq:lcr}
\lcr_{\it ij}=\frac{\ell_{\it il}\ell_{\it jk}}{\ell_{\it lj}\ell_{\it ki}}.
\end{equation}
(If the two triangles are embedded in the complex plane, this is just
the modulus of the complex cross-ratio of the four vertices.) This
definition of length cross-ratios implicitly assumes that an
orientation has been chosen on the surface. For non-orientable
surfaces, the length cross-ratio is well-defined on the oriented
double cover.
The product of length cross-ratios around an interior vertex $i\in V$ is $1$, because all lengths cancel:
\begin{equation}
\label{eq:lcr_product}
\prod_{{\it ij}\ni i} \lcr_{\it ij} = 1.
\end{equation}
\begin{proposition}%[\cite{BPS2015:dconf}]
Two euclidean triangulations $(\Sigma, \ell)_{\euc}$ and $(\Sigma,
\tilde \ell)_{\euc}$ are discretely conformally equivalent if and
only if for each interior edge ${\it ij}\in \Eint_{\Sigma}$, the induced length
cross-ratios agree.
\end{proposition}
\begin{remark}
Analogous statements hold for spherical and hyperbolic
triangulations. Equation~\eqref{eq:lcr} has to be modified by
replacing $\ell$ with $\sin\frac{\ell}{2}$ or $\sinh\frac{\ell}{2}$,
respectively (compare Remark~\ref{rem:chords}).
\end{remark}
\subsection{Triangulations: Reconstructing lengths from length cross-ratios}
\label{sec:ell_from_lcr}
To deal with Riemann surfaces that are given in terms of Schottky data
(Section~\ref{sec:schottky}) we will
need to reconstruct a function $\ell:E_{\Sigma}\rightarrow\R_{>0}$
satisfying~\eqref{eq:lcr} from given length cross-ratios. (It is not
required that the function $\ell$ satisfies the triangle inequalities.) To this end, we define
auxiliary quantities $c^{i}_{\it jk}$ attached to the angles of the
triangulation. The value at vertex $i$ of the triangle ${\it ijk}\in F$
is defined as
\begin{equation}
\label{eq:cijk}
c^{i}_{\it jk}=\frac{\ell_{\it jk}}{\ell_{\it ij}\ell_{\it ki}}.
\end{equation}
Then~\eqref{eq:lcr} is equivalent to
\begin{equation}
\lcr_{\it ij}=\frac{c^i_{\it jk}}{c^i_{\it lj}}.
\end{equation}
Now, given a function $\lcr:\Eint\rightarrow\R_{>0}$ defined on the
set of interior edges $\Eint$ and satisfying the product
condition~\eqref{eq:lcr_product} around interior vertices, one can
find parameters $c^{i}_{\it jk}$ satisfying~\eqref{eq:cijk}
by choosing one value at each vertex and then successively multiplying
length cross-ratios. The corresponding function $\ell$ is then
determined by
\begin{equation}
\ell_{\it ij} = \frac{1}{\sqrt{c^i_{\it jk}c^j_{\it ki}}} = \frac{1}{\sqrt{c^i_{\it lj}c^j_{\it il}}}.
\end{equation}
\subsection{Bipartite graphs: Characterization by length multi-ratios}
\label{sec:even_cycles}
A different characterization of discrete conformal equivalence in
terms of length multi-ratios holds if the $1$-skeleton of the
polyhedral surface is bipartite, i.e., if the vertices can be colored
with two colors so that no two neighboring vertices share the same
color.
\begin{proposition}
\label{prop:bipartite}
(i) If two combinatorially equivalent euclidean cyclic polyhedral
surfaces $(\Sigma,\ell)_{\euc}$ and\/ $(\Sigma,\ellt)_{\euc}$ with
discrete metrics $\ell$ and $\ellt$ are discretely conformally
equivalent, then the\/ \emph{length multi-ratios} for even cycles
\begin{equation*}
i_{1}i_{2},i_{2}i_{3}, \ldots, i_{2n}i_{1}
\end{equation*}
are equal:
\begin{equation}
\label{eq:equal_multiratios}
\frac{\ell_{i_{1}i_{2}}\ell_{i_{3}i_{4}}\cdots\ell_{i_{2n-1}i_{2n}}}
{\ell_{i_{2}i_{3}}\ell_{i_{4}i_{5}}\cdots\ell_{i_{2n}i_{1}}\hfill}
=
\frac{\ellt_{i_{1}i_{2}}\ellt_{i_{3}i_{4}}\cdots\ellt_{i_{2n-1}i_{2n}}}
{\ellt_{i_{2}i_{3}}\ellt_{i_{4}i_{5}}\cdots\ellt_{i_{2n}i_{1}}\hfill}
\,.
\end{equation}
(ii) If the $1$-skeleton of\/ $\Sigma$ is bipartite, i.e., if all
cycles are even, then this condition is also sufficient: If the
length multi-ratios are equal for all cycles, then the
polyhedral surfaces are discretely conformally equivalent.
\end{proposition}
\begin{proof}
(i) This is obvious, because all scale factors $e^{u}$ cancel.
(ii) It is easy to see that equations~\eqref{eq:tilde_ell_euc} can
be solved for the scale factors $e^{u/2}$ if the length multi-ratios
are equal. Note that the scale factors are not uniquely determined:
They can be multiplied by $\lambda$ and $1/\lambda$ on the two
vertex color classes, respectively. To find a particular solution,
one can fix the value of $e^{u/2}$ at one vertex, and find the
other values by alternatingly dividing and multiplying by
$\ellt/\ell$ along paths. The equality of length multi-ratios
implies that the obtained values do not depend on the path.
\end{proof}
\begin{remark}
If a polyhedral surface is simply connected, then its $1$-skeleton
is bipartite if and only if all faces are even polygons. If a
polyhedral surface is not simply connected, then having even faces
is only a necessary condition for being bipartite.
\end{remark}
A polyhedral surface with bipartite $1$-skeleton has even faces. If a
polyhedral surface has even faces and is simply connected, then its
$1$-skeleton is bipartite, and the face boundaries generate all
cycles. Thus, Proposition~\ref{prop:bipartite} implies the following
corollary.
\begin{corollary}
\label{cor:simply_connected_bipartite}
Two simply connected combinatorially equivalent euclidean cyclic
polyhedral surfaces with even faces and with discrete metrics $\ell$
and $\ellt$ are discretely conformally equivalent if and only
if the multi-ratio condition~\eqref{eq:equal_multiratios} holds for
every face boundary cycle.
\end{corollary}
\begin{remark}
Analogous statements hold for spherical and hyperbolic cyclic
polyhedral surfaces. In the multi-ratio condition, one has to replace
non-euclidean lengths $\ell$ with $\sin\frac{\ell}{2}$ or
$\sinh\frac{\ell}{2}$, respectively (compare
Remark~\ref{rem:chords}).
\end{remark}
\subsection{Quadrangulations: Cross-ratio system on quad-graphs}
\label{sec:quads}
The case of cyclic quadrilateral faces is somewhat special (and we
will return to it in Section~\ref{sec:quadrangulations}), because
equal length cross-ratio implies equal complex cross-ratio:
\begin{proposition}
\label{prop:quad}
If two euclidean polyhedral surfaces with cyclic quadrilateral faces
are discretely conformally equivalent, then corresponding faces ${\it
ijkl}\in F$ have the same complex cross-ratio (when embedded in the
complex plane):
\begin{equation*}
\frac{(z_{i}-z_{j})(z_{k}-z_{l})}{(z_{j}-z_{k})(z_{l}-z_{i})}=
\frac{(\tilde z_{i}-\tilde z_{j})(\tilde z_{k}-\tilde z_{l})}{(\tilde z_{j}-\tilde z_{k})(\tilde z_{l}- \tilde z_{i})}
\end{equation*}
\end{proposition}
\begin{proof}
This follows immediately from Proposition~\ref{prop:bipartite}: The
length multi-ratio of a quadrilateral is the modulus of the complex
cross-ratio. If the (embedded) quadrilaterals are cyclic, then their
complex cross-ratios are real and negative, so their arguments are
also equal.
\end{proof}
For planar polyhedral surfaces, i.e., for quadrangulations in the
complex plane, Proposition~\ref{prop:quad} connects discrete
conformality with the cross-ratio system on quad-graphs. A
\emph{quad-graph}\/ in the most general sense is simply an abstract CW
cell decomposition of a surface with quadrilateral faces. Often, more
conditions are added to the definition as needed. Here, we will
require that the surface is oriented and that the vertices are
bicolored black and white. For simplicity, we will also assume that
the CW complex is strongly regular (see
Section~\ref{sec:notation}). The \emph{cross-ratio system} on a
quad-graph $\Sigma$ imposes equations~\eqref{eq:cross-ratio_system} on
variables~$z_{i}$ that are attached to the vertices $i\in
V_{\Sigma}$. There is one equation per face ${\it ijkl}\in F_{\Sigma}$:
\begin{equation}
\label{eq:cross-ratio_system}
\frac{(z_{i}-z_{j})(z_{k}-z_{l})}{(z_{j}-z_{k})(z_{l}-z_{i})}=Q_{\it
ijkl},
\end{equation}
where we assume that $i$ is a black vertex and the boundary
vertices $\it ijkl$ are listed in the positive cyclic order. (Here we
need the orientation). On the right hand side of the equation,
$Q:F_{\Sigma}\rightarrow\C\setminus\{0,1\}$ is a given function. In
particular, it is required that the values $z_{i},z_{j},z_{k},z_{l}$
on a face are distinct.
By Proposition~\ref{prop:quad}, two discretely conformally equivalent
planar quadrangulations correspond to two solutions of the cross-ratio
system on the same quad-graph with the same cross-ratios $Q$. The
following proposition says that in the simply connected case, one can
find complex factors $w$ on the vertices whose absolute values
$|w|=e^{u/2}$ govern the length change of edges according
to~\eqref{eq:tilde_ell_euc}, and whose arguments govern the rotation
of edges. Note that~\eqref{eq:tilde_ell_euc} is obtained
from~\eqref{eq:complex_factors} by taking absolute values.
\begin{proposition}
\label{prop:complex_factors}
Let $\Sigma$ be a simply connected quad-graph. Two functions
$z,\tilde z:V_{\Sigma}\rightarrow\C$ are solutions of the
cross-ratio system on $\Sigma$ with the same cross-ratios $Q$ if and
only if there is a function $w:V_{\Sigma}\rightarrow \C$ such that
for all edges ${\it ij}\in E_{\Sigma}$
\begin{equation}
\label{eq:complex_factors}
\tilde z_{j}-\tilde z_{i}=w_{i}w_{j}(z_{j}-z_{i}).
\end{equation}
\end{proposition}
\begin{proof}
As in the proof of Proposition~\ref{prop:bipartite}, it is easy to
see that the system of equations~\eqref{eq:complex_factors} is
solvable for $w$ if and only if the complex multi-ratios for even
cycles are equal. Because $\Sigma$ is simply connected, this is the
case if and only if the complex cross-ratios of corresponding faces
are equal.
\end{proof}
\begin{remark}
The cross-ratio system on quad-graphs~\eqref{eq:cross-ratio_system}
is an integrable system (in the sense of 3D
consistency~\cite{Bobenko-Suris2002, BobenkoSuris2008}) if the
cross-ratios $Q$ ``factor'', i.e., if there exists a function on the
set of edges, $a:E_{\Sigma}\rightarrow\C$, that satisfies the
following conditions for each quadrilateral ${\it ijkl}\in F$:
\begin{compactenum}[(i)]
\item It takes the same value on opposite edges,
\begin{equation}
a_{\it ij}=a_{\it kl}, \quad a_{\it jk}=a_{\it li}.
\end{equation}
\item
\begin{equation}
\label{eq:Q_factors}
Q_{\it ijkl} = \frac{a_{\it ij}}{a_{\it jk}}\ .
\end{equation}
\end{compactenum}
In Adler, Bobenko \& Suris' classification of integrable equations
on quad-graphs~\cite{Adler-Bobenko-Suris2003}, the integrable
cross-ratio system is called $({\rm Q1})_{\delta=0}$. It is also
known as the discrete Schwarzian Korteweg--de Vries (dSKdV)
equation, especially when it is considered on the regular square
lattice~\cite{NijhoffCapel1995} with constant cross-ratios.
If the cross-ratios $Q$ have unit modulus, the cross-ratio system on
quad-graphs is connected with circle patterns with prescribed
intersection angles~\cite{Bobenko-Suris2002, BobenkoSuris2008}.
\end{remark}
\begin{remark}
The system of equations~\eqref{eq:complex_factors} is also connected
with an integrable system on quad-graphs. Let $b_{\it
ij}=z_{j}-z_{i}$, so $b$ is a function on the oriented edges with
$b_{\it ij}=-b_{\it ji}$. Let us also assume that the quad-graph
$\Sigma$ is simply connected. Then the
system~\eqref{eq:complex_factors} defines a function
$z:V\rightarrow\C$ (uniquely up to an additive constant) if and only
if the complex scale factors $w:V_{\Sigma}\rightarrow \C$ satisfy,
for each face ${\it ijkl}\in F$ the closure condition
\begin{equation}
\label{eq:dmKdV}
b_{\it ij}w_{i}w_{j}+b_{\it jk}w_{j}w_{k}+b_{\it kl}w_{k}w_{l}+b_{\it li}w_{l}w_{i}=0.
\end{equation}
This system for $w$ is integrable if, for each face ${\it ijkl}\in
F$,
\begin{equation*}
b_{\it ij}+b_{\it kl}=0 \quad\text{and}\quad b_{\it jk}+b_{\it
li}=0.
\end{equation*}
In this case,~\eqref{eq:dmKdV} is known as discrete modified
Korteweg--de Vries (dmKdV) equation~\cite{NijhoffCapel1995}, or as
Hirota equation~\cite{Bobenko-Suris2002, BobenkoSuris2008}.
\end{remark}
\section{Variational principles for discrete conformal maps}
\label{sec:vari-princ}
\subsection{Discrete conformal mapping problems}
We will consider the following discrete conformal mapping
problems. (The notation $(\Sigma,\ell)_{\g}$ was introduced in
Definition~\ref{def:sigma_ell_g}.)
\begin{problem}[prescribed angle sums]
\label{prob:total_angles}
\textbf{Given}
\begin{compactitem}[$\bullet$]
%\item the discrete metric $\ell:E\rightarrow\R_{>0}$ of a euclidean cyclic polyhedral surface,
\item A euclidean, spherical, or hyperbolic cyclic polyhedral surface
$(\Sigma,\ell)_{\g}$, where $\g\in\{\euc, \hyp, \sph\}$,
\item a desired total angle $\Theta_{i}>0$ for each vertex $i\in V_{\Sigma}$,
\item a choice of geometry $\gt\in\{\euc, \hyp, \sph\}$,
\end{compactitem}
\noindent%
\textbf{find} % the discrete metric $\ellt:E\rightarrow\R_{>0}$ of
a discretely conformally equivalent cyclic polyhedral surface
$(\Sigma,\ellt)_{\gt}$ of geometry $\gt$ that has the
desired total angles $\Theta$ around vertices.
\end{problem}
For interior vertices, $\Theta$ prescribes a desired cone angle. For
boundary vertices, $\Theta$ prescribes a desired interior angle of the
polygonal boundary. If $\Theta_{i}=2\pi$ for all interior
vertices~$i$, then Problem~\ref{prob:total_angles} asks for a flat
metric in the discrete conformal class, with prescribed boundary
angles if the surface has a boundary.
More generally, we will consider the following problem, where the
logarithmic scale factors $u$ (see Definition~\ref{def:dconf}) are
fixed at some vertices and desired angle sums $\Theta$ are prescribed
at the other vertices. The problems to find discrete Riemann maps
(Section~\ref{sec:riemann_map}) and maps onto the sphere
(Section~\ref{sec:spheres_euclidean}) can be reduced to this mapping problem
with some fixed scale factors.
\begin{problem}[prescribed scale factors and angle sums]
\label{prob:factors_and_angles}
\textbf{Given}
\begin{compactitem}[$\bullet$]
\item A euclidean, spherical, or hyperbolic cyclic polyhedral surface
$(\Sigma,\ell)_{\g}$, where $\g\in\{\euc, \hyp, \sph\}$,
\item a partition $V_{\Sigma}=V_0\dot\cup V_1$
\item a prescribed angle $\Theta_{i} > 0$ for each vertex $i\in V_1$,
\item a prescribed logarithmic scale factor $u_i\in \R$ for each vertex $i\in V_0$,
\item a choice of geometry $\gt\in\{\euc, \hyp, \sph\}$,
\end{compactitem}
\noindent%
\textbf{find} a discretely conformally equivalent cyclic polyhedral surface
$(\Sigma,\ellt)_{\gt}$ of geometry $\gt$ that has the desired total angles $\Theta$
around vertices in $V_1$ and the fixed scale factors $u$ at vertices
in $V_{0}$.
\end{problem}
Note that for $V_{0}=\emptyset$, $V_{1}=V$,
Problem~\ref{prob:factors_and_angles} reduces to
Problem~\ref{prob:total_angles}.
\subsection{Analytic formulation of the mapping problems}
\label{sec:analytic}
We rephrase the mapping Problem~\ref{prob:factors_and_angles}
analytically as Problem~\ref{prob:analytic}. The sides of a cyclic
polygon determine its angles, but practical explicit equations for the
angles as functions of the sides exist only for triangles, e.g.,
\eqref{eq:half_angle}. For this reason it makes sense to triangulate
the polyhedral surface. For the angles in a triangulation, we use the
notation shown in Figure~\ref{fig:triangle_notation}.
\begin{figure}
\centering
\includegraphics[width=0.4\textwidth]{notation_triangle_circle.pdf}\\
\hspace*{0.3\textwidth}
\caption{Notation of lengths and angles in a triangle ${\it ijk} \in F$.}
\label{fig:triangle_notation}
\end{figure}
In triangle $\it ijk$, we denote the angle at vertex $i$ by
$\alpha^i_{\it jk}$. We denote by $\beta^i_{\it ij}$ the angle between
the circumcircle and the edge $\it jk$. The angles $\alpha$ and
$\beta$ are related by
\begin{equation*}
\alpha_{\it jk}^i+\beta_{\it ki}^j+\beta_{\it ij}^k=\pi,
\end{equation*}
so betas determine alphas and vice versa:
\begin{equation}
\label{eq:beta}
2\beta_{\it jk}^i = \pi + \alpha_{\it jk}^i - \alpha_{\it ki}^j -
\alpha_{\it ij}^k,\quad\ldots %\\
\end{equation}
For euclidean triangles,
\begin{equation*}
\alpha_{\it jk}^i+\alpha_{\it
ki}^j+\alpha_{\it ij}^k=\pi,
\qquad
\beta_{\it jk}^i=\alpha_{\it jk}^i.
\end{equation*}
The half-angle equation can be used to express the angles as functions
of lengths:
\begin{equation}
\label{eq:half_angle}
\tan\left(\frac{ \alpha_{\it jk}^i}{2}\right) =
\begin{cases}
\left(\dfrac{
(-\ell_{\it ij} +\ell_{\it jk} +\ell_{\it ki})
(\ell_{\it ij} +\ell_{\it jk} -\ell_{\it ki})
}{
(\ell_{\it ij} -\ell_{\it jk} +\ell_{\it ki})
(\ell_{\it ij} + \ell_{\it jk} +\ell_{\it ki})
}\right)^{\frac{1}{2}}
& (\euc)\\
\left(\dfrac{
\sinh\big((\ell_{\it ij}-\ell_{\it jk}+\ell_{\it ki})/2\big)
\sinh\big((\ell_{\it ij}+\ell_{\it jk}-\ell_{\it ki})/2\big)
}{
\sinh\big((-\ell_{\it ij}+\ell_{\it jk}+\ell_{\it ki})/2\big)
\sinh\big((\ell_{\it ij}+\ell_{\it jk}+\ell_{\it ki})/2\big)
}\right)^{\frac{1}{2}}
& (\hyp)\\
\left(\dfrac{
\sin\big((\ell_{\it ij}-\ell_{\it jk}+\ell_{\it ki})/2\big)
\sin\big((\ell_{\it ij}+\ell_{\it jk}-\ell_{\it ki})/2\big)
}{
\sin\big((-\ell_{\it ij}+\ell_{\it jk}+\ell_{\it ki})/2\big)
\sin\big((\ell_{\it ij}+\ell_{\it jk}+\ell_{\it ki})/2\big)
}\right)^{\frac{1}{2}}
& (\sph)
\end{cases}
\end{equation}
\begin{lemma}[analytic formulation of Problem~\ref{prob:factors_and_angles}]
\label{lem:analytic}
Let
\begin{compactitem}[$\bullet$]
\item the polyhedral surface\/ $(\Sigma,\ell)_{\g}$,
\item the partition $V_{0}\dot\cup V_{1}$,
\item $\Theta_{i}$ for $i\in V_{1}$,
\item $u_{i}$ for $i\in V_{0}$,
\item the geometry $\gt\in\{\euc,\hyp,\sph\}$
\end{compactitem}
be given as in Problem~\ref{prob:factors_and_angles}. Let~$\Delta$
be an abstract triangulation obtained by adding non-crossing
diagonals to non-triangular faces of\/~$\Sigma$. (So
$V_{\Sigma}=V_{\Delta}$, $E_{\Sigma}\subseteq E_{\Delta}$, and the
set of added diagonals is $E_{\Delta}\setminus E_{\Sigma}$.) For
${\it ij}\in E_{\Sigma}$, define $\lambda_{\it ij}$ by
\begin{equation}
\label{eq:lambda}
\lambda_{\it ij}=
\begin{cases}
2\log\ell_{\it ij} & \text{if}\quad \g=\euc\\
2\log\sinh\frac{\ell_{\it ij}}{2} & \text{if}\quad \g=\hyp\\
2\log\sin\frac{\ell_{\it ij}}{2} & \text{if}\quad \g=\sph
\end{cases}
\end{equation}
Then solving Problem~\ref{prob:factors_and_angles} is equivalent to
solving Problem~\ref{prob:analytic} with $E_{0}=E_{\Sigma}$ and
$E_{1}=E_{\Delta}\setminus E_{\Sigma}$.
\end{lemma}
\goodbreak
\begin{problem}
\label{prob:analytic}
\textbf{Given}
\begin{compactitem}[$\bullet$]
\item an abstract triangulation $\Delta$,
\item a partition $V_{\Delta}=V_0\dot\cup V_1$,
\item $u_{i}\in\R$ for $i\in{V_{0}}$
\item $\Theta_{i}\in\R_{>0}$ for $i\in{V_{1}}$,
\item a partition $E_{\Delta}=E_{0}\dot\cup E_{1}$,
\item $\lambda_{\it ij}$ for ${\it ij}\in{E_{0}}$,
\item $\gt\in\{\euc, \hyp, \sph\}$,
\end{compactitem}
\textbf{find} $u_{i}\in\R$ for $i\in{V_{1}}$ and $\lambda_{\it ij}$
for ${\it ij}\in{E_{1}}$
such that
\begin{equation*}
\ellt:E_{\Delta}\rightarrow\R_{>0}
\end{equation*}
defined by
\begin{equation}
\label{eq:lambdat}
\lambdat_{\it ij} = u_{i} + u_{j} + \lambda_{\it ij},\\
\end{equation}
and
\begin{equation}
\label{eq:ellt}
\ellt_{\it ij} =
\begin{cases}
e^{\frac{1}{2}\lambdat_{\it ij}} & \text{if}\quad \gt=\euc\\
2\arsinh e^{\frac{1}{2}\lambdat_{\it ij}} & \text{if}\quad \gt=\hyp\\
2\arcsin e^{\frac{1}{2}\lambdat_{\it ij}} & \text{if}\quad \gt=\sph\\
\end{cases}
\end{equation}
satisfies for all ${\it ijk}\in F_{\Delta}$ the triangle inequalities
\begin{equation}
\label{eq:triang_ineq}
\ellt_{\it ij}<\ellt_{\it jk}+\ellt_{\it ki},\qquad
\ellt_{\it jk}<\ellt_{\it ki}+\ellt_{\it ij},\qquad
\ellt_{\it ki}<\ellt_{\it ij}+\ellt_{\it jk},
\end{equation}
and for
$\gt=\sph$ also
\begin{equation}
\label{eq:triang_ineq_sph}
\ellt_{\it ij}+\ellt_{\it jk}+\ellt_{\it ki}<2\pi,
\end{equation}
and such that
\begin{alignat}{2}
\label{eq:vertex_system}
\sum_{{\it jk}:{\it ijk}\in F_{\Delta}}\alphat_{\it jk}^i &= \Theta_i&
\quad&\text{for all}\quad i\in V_{1},\\
\label{eq:edge_system}
\betat_{\it ij}^k+\betat_{\it ji}^l &= \pi&
\quad&\text{for all}\quad
\textit{ij} \in E_{1},
\end{alignat}
where $\alphat$ and $\betat$ are defined by~\eqref{eq:half_angle}
and~\eqref{eq:beta} (with $\alpha$, $\beta$, $\ell$ replaced by
$\alphat$, $\betat$, $\ellt$). Note that for $\gt=\sph$ it is also required
that $\lambdat<0$ for $\ellt$ to be well-defined.
\end{problem}
\begin{proof}[Proof of Lemma~\ref{lem:analytic}]
Note that~\eqref{eq:vertex_system} says that the angle sums at
vertices in $V_{1}$ have the prescribed values,
and~\eqref{eq:edge_system} says that neighboring triangles of
$(\Delta,\ellt)_{\gt}$ belonging to the same face of $\Sigma$ share
the same circumcircle. So deleting the edges in $E_{\Delta}\setminus
E_{\Sigma}$, one obtains a cyclic polyhedral surface
$(\Sigma,\ellt|_{E_{\Sigma}})_{\gt}$.
\end{proof}
\subsection{Variational principles}
\label{sec:variational}
\begin{definition}
\label{def:E}
For an abstract triangulation $\Delta$ and a function
$\Theta\in\R_{>0}^{V_{\Delta}}$, define the three functions
\begin{alignat*}{2}
E_{\Delta,\Theta}^{\euc},E_{\Delta,\Theta}^{\hyp},E_{\Delta,\Theta}^{\sph}:\,
\R^{E_{\Delta}}&\times\R^{V_{\Delta}}&&\longrightarrow\R,\\
(\lambda&, u)&&\longmapsto E_{\Delta,\Theta}^{\gt}(\lambda, u)
\end{alignat*}
by
\begin{equation}
\label{eq:E}
E_{\Delta,\Theta}^{\gt}(\lambda, u)
= \sum_{{\it ijk}\in F_{\Delta}}\big(f^{\gt}(\lambdat_{\it ij},\lambdat_{\it jk},\lambdat_{\it ki}) -
\frac{\pi}{2}(\lambdat_{\it jk} + \lambdat_{\it ki} +
\lambdat_{\it ij})\big) + \sum_{i\in V_{\Delta}} \Theta_i u_i,
\end{equation}
where $\gt\in\{\euc,\hyp,\sph\}$, $\lambdat$ is defined as function
of $\lambda$ and $u$ by~\eqref{eq:lambdat}, and the functions
$f^{\euc}$, $f^{\hyp}$, $f^{\sph}$ are defined in Section~\ref{sec:f}.
\end{definition}
We will often omit the subscripts and write simply
$E^{\euc},E^{\hyp},E^{\sph}$ when this is unlikely to cause confusion.
\begin{definition}
We define the \emph{feasible regions}\/ of the functions
$E_{\Delta,\Theta}^{\gt}$ as the following open subsets of their
domains:
\begin{compactitem}[$\bullet$]
\item The feasible region of $E^{\euc}$ and $E^{\hyp}$ is the set of
all $(\lambda, u)\in\R^{E_{\Delta}}\times\R^{V_{\Delta}}$ such
that $\ellt\in\R_{>0}^{E}$ defined by~\eqref{eq:lambdat}
and~\eqref{eq:ellt} satisfies the triangle
inequalities~\eqref{eq:triang_ineq}
\item The feasible region of $E^{\sph}$ is the set of all $(\lambda,
u)\in\R^{E_{\Delta}}\times\R^{V_{\Delta}}$ such that $\lambdat$
defined by~\eqref{eq:lambdat} is negative, and $\ellt$, which is
then well-defined by~\eqref{eq:ellt}, satisfies the triangle
inequalities~\eqref{eq:triang_ineq} and the
inequalities~\eqref{eq:triang_ineq_sph}.
\end{compactitem}
\end{definition}
\begin{theorem}[Variational principles]
\label{thm:variational}
Every solution $(\Sigma,\ellt)_{\gt}$ of
Problem~\ref{prob:factors_and_angles} corresponds
via~\eqref{eq:lambdat} and~\eqref{eq:ellt} to a critical point\/
$(\lambda, u)\in\R^{E_{\Delta}}\times\R^{V_{\Delta}}$ of the
function $E^{\gt}_{\Delta,\Theta}$ under the constraints that
$\lambda_{\it ij}$ and $u_{i}$ are fixed for ${\it ij}\in E_{0}$ and
$i\in V_{0}$, respectively. (The triangulation $\Delta$, and
$E_{0}=E_{\Sigma}$ and $E_{1}=E_{\Delta}\setminus E_{\Sigma}$ are as
in Lemma~\ref{lem:analytic}, and the given function $\Theta$ is
extended from~$V_{1}$ to~$V$ by arbitrary values on $V_{0}$.)
Conversely, if\/ $(\lambda,
u)\in\R^{E_{\Delta}}\times\R^{V_{\Delta}}$ is a critical point of
the function $E^{\gt}_{\Delta,\Theta}$ under the same constraints,
and if\/ $(\lambda, u)$ is contained in the feasible region of
$E^{\gt}_{\Delta,\Theta}$, then\/ $(\Sigma,\ellt)_{\gt}$ defined
by~\eqref{eq:lambdat} and~\eqref{eq:ellt} is a solution of
Problem~\ref{prob:factors_and_angles}.
\end{theorem}
\begin{proof}
This follows from the analytic formulation of
Problem~\ref{prob:factors_and_angles} (see Section~\ref{sec:analytic}) and
Proposition~\ref{prop:dE}.
\end{proof}
\begin{proposition}[First derivative of $E^{\gt}$]
\label{prop:dE}
The partial derivatives of $E^{\gt}$ are
\begin{align}
\label{eq:dEdu}
\frac{\partial E^{\gt}}{\partial u_i}(\lambda,u) &= \Theta_i - \sum_{{\it
ijk}\ni i}\alphat_{\it jk}^i \\
\label{eq:dEdlambda}
\frac{\partial E^{\gt}}{\partial \lambda_{\it ij}}(\lambda,u) &= \betat_{\it ij}^k + \betat_{\it ij}^l -\pi.
\end{align}
Here $\alphat$, $\betat$ are defined by~\eqref{eq:half_angle}
and~\eqref{eq:beta} (with $\alpha$, $\beta$, $\ell$ replaced by
$\alphat$, $\betat$, $\ellt$) if\/ $(\lambda,u)$ is contained in the
feasible region of $E^{\gt}$. For\/ $(\lambda,u)$ not contained in
the feasible region, the definition of $\alphat$, $\betat$ is
extended like in Definition~\ref{def:f}.
\end{proposition}
\begin{proof}
Equations~\eqref{eq:dEdu} and~\eqref{eq:dEdlambda} follow from the
definition of $E^{\gt}$ and Proposition~\ref{prop:df} on the partial
derivatives of $f^{\g}$.
\end{proof}
\begin{theorem}[Uniqueness for mapping problems]
\label{thm:uniqueness}
If Problem~\ref{prob:factors_and_angles} with target geometry
$\gt\in\{\euc,\hyp\}$
has a solution, then the solution is unique --- except if $\gt=\euc$