-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
129 lines (114 loc) · 3.88 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from setuptools import setup, Extension, find_packages
import subprocess
import torch
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension, CUDA_HOME
from scripts.utils_openfold import get_nvidia_cc
version_dependent_macros = [
'-DVERSION_GE_1_1',
'-DVERSION_GE_1_3',
'-DVERSION_GE_1_5',
]
extra_cuda_flags = [
'-std=c++14',
'-maxrregcount=50',
'-U__CUDA_NO_HALF_OPERATORS__',
'-U__CUDA_NO_HALF_CONVERSIONS__',
'--expt-relaxed-constexpr',
'--expt-extended-lambda'
]
def get_cuda_bare_metal_version(cuda_dir):
if cuda_dir==None or torch.version.cuda==None:
print("CUDA is not found, cpu version is installed")
return None, -1, 0
else:
raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
output = raw_output.split()
release_idx = output.index("release") + 1
release = output[release_idx].split(".")
bare_metal_major = release[0]
bare_metal_minor = release[1][0]
return raw_output, bare_metal_major, bare_metal_minor
compute_capabilities = set([
(3, 7), # K80, e.g.
(5, 2), # Titan X
(6, 1), # GeForce 1000-series
])
compute_capabilities.add((7, 0))
_, bare_metal_major, _ = get_cuda_bare_metal_version(CUDA_HOME)
if int(bare_metal_major) >= 11:
compute_capabilities.add((8, 0))
compute_capability, _ = get_nvidia_cc()
if compute_capability is not None:
compute_capabilities = set([compute_capability])
cc_flag = []
for major, minor in list(compute_capabilities):
cc_flag.extend([
'-gencode',
f'arch=compute_{major}{minor},code=sm_{major}{minor}',
])
extra_cuda_flags += cc_flag
cc_flag = ['-gencode', 'arch=compute_70,code=sm_70']
if bare_metal_major != -1:
modules = [CUDAExtension(
name="attn_core_inplace_cuda",
sources=[
"src/openfold/utils/kernel/csrc/softmax_cuda.cpp",
"src/openfold/utils/kernel/csrc/softmax_cuda_kernel.cu",
],
include_dirs=[
os.path.join(
os.path.dirname(os.path.abspath(__file__)),
'src/openfold/utils/kernel/csrc/'
)
],
extra_compile_args={
'cxx': ['-O3'] + version_dependent_macros,
'nvcc': (
['-O3', '--use_fast_math'] +
version_dependent_macros +
extra_cuda_flags
),
}
)]
else:
modules = [CppExtension(
name="attn_core_inplace_cuda",
sources=[
"src/openfold/utils/kernel/csrc/softmax_cuda.cpp",
"src/openfold/utils/kernel/csrc/softmax_cuda_stub.cpp",
],
extra_compile_args={
'cxx': ['-O3'],
}
)]
setup(
name='ComMat',
version='0.1.0',
description='Community-based Deep Learning and Antibody H3 Loop Modeling',
author='Hyeonunk Woo, Yubeen Kim',
author_email='dngusdnr1@snu.ac.kr',
url='https://github.com/seoklab/ComMat',
packages=find_packages(exclude=["tests", "scripts"]),
include_package_data=True,
package_data={
"h3xsemble": ['src/utils/kernel/csrc/*'],
"": ["resources/stereo_chemical_props.txt"]
},
ext_modules=modules,
cmdclass={'build_ext': BuildExtension},
)