-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
100 lines (88 loc) · 3.57 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from argparse import ArgumentParser
from multiprocessing import Pool
import os
from AESRC.dataset import AESRCDataset
from AESRC.lightning_model import LightningModel
# from AESRC.dataset import AESRCSpectralDataset as AESRCDataset
# from AESRC.lightning_model_spectral import LightningModel
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
import torch
import torch.utils.data as data
from config import Config
if __name__ == "__main__":
parser = ArgumentParser(add_help=True)
parser.add_argument('--dataset_path', type=str, default=Config.dataset_path)
parser.add_argument('--data_csv_path', type=str, default=Config.data_csv_path)
parser.add_argument('--wav_len', type=int, default=Config.wav_len)
parser.add_argument('--batch_size', type=int, default=Config.batch_size)
parser.add_argument('--epochs', type=int, default=Config.epochs)
parser.add_argument('--hidden_size', type=float, default=Config.hidden_size)
parser.add_argument('--gpu', type=int, default=Config.gpu)
parser.add_argument('--n_workers', type=int, default=Config.n_workers)
parser.add_argument('--dev', type=str, default=Config.dev)
parser.add_argument('--model_checkpoint', type=str, default=Config.model_checkpoint)
parser = pl.Trainer.add_argparse_args(parser)
hparams = parser.parse_args()
print(f'Testing Model on AESRC2020 Dataset\n#Cores = {hparams.n_workers}\t#GPU = {hparams.gpu}')
# Training, Validation and Testing Dataset
## Training Dataset
train_set = AESRCDataset(
csv_file = os.path.join(hparams.data_csv_path, 'AESRC2020TrainData.csv'),
dataset_path = hparams.dataset_path,
wav_len = hparams.wav_len,
)
## Training DataLoader
trainloader = data.DataLoader(
train_set,
batch_size=hparams.batch_size,
shuffle=True,
num_workers=hparams.n_workers
)
## Validation Dataset
valid_set = AESRCDataset(
csv_file = os.path.join(hparams.data_csv_path, 'AESRC2020ValData.csv'),
dataset_path = hparams.dataset_path,
wav_len = hparams.wav_len,
is_train=False
)
## Validation Dataloader
valloader = data.DataLoader(
valid_set,
batch_size=hparams.batch_size,
shuffle=False,
num_workers=hparams.n_workers
)
## Testing Dataset
test_set = AESRCDataset(
csv_file = os.path.join(hparams.data_csv_path, 'AESRC2020TestData.csv'),
dataset_path = hparams.dataset_path,
wav_len = hparams.wav_len,
is_train=False,
is_test = True
)
## Testing Dataloader
testloader = data.DataLoader(
test_set,
batch_size=1,
# hparams.batch_size,
shuffle=False,
num_workers=hparams.n_workers
)
print('Dataset Split (Test)=', len(test_set))
# Testing the Model
if hparams.model_checkpoint:
model = LightningModel.load_from_checkpoint(hparams.model_checkpoint)
model.eval()
trainer = pl.Trainer(fast_dev_run=hparams.dev,
gpus=hparams.gpu,
)
# print('\nTesting on AESRC2020 Train Dataset:\n')
# trainer.test(model, test_dataloaders=trainloader)
# print('\nTesting on AESRC2020 Val Dataset:\n')
# trainer.test(model, test_dataloaders=valloader)
print('\nTesting on AESRC2020 Test Dataset:\n')
trainer.test(model, test_dataloaders=testloader)
else:
print('Model check point for testing is not provided!!!')