-
Notifications
You must be signed in to change notification settings - Fork 4
/
imdb_dpsgd_keras.py
122 lines (101 loc) · 4.66 KB
/
imdb_dpsgd_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# Copyright 2019, The TensorFlow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training a CNN on MNIST with Keras and the DP SGD optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
from absl import logging
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_datasets as tfds
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
GradientDescentOptimizer = tf.compat.v1.train.GradientDescentOptimizer
flags.DEFINE_boolean(
'dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 1.1,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
flags.DEFINE_integer('batch_size', 250, 'Batch size')
flags.DEFINE_integer('epochs', 60, 'Number of epochs')
flags.DEFINE_integer(
'microbatches', 250, 'Number of microbatches '
'(must evenly divide batch_size)')
flags.DEFINE_string('model_dir', None, 'Model directory')
FLAGS = flags.FLAGS
def compute_epsilon(steps):
"""Computes epsilon value for given hyperparameters."""
if FLAGS.noise_multiplier == 0.0:
return float('inf')
orders = [1 + x / 10. for x in range(1, 100)] + list(range(12, 64))
sampling_probability = FLAGS.batch_size / 60000
rdp = compute_rdp(q=sampling_probability,
noise_multiplier=FLAGS.noise_multiplier,
steps=steps,
orders=orders)
# Delta is set to 1e-5 because MNIST has 60000 training points.
return get_privacy_spent(orders, rdp, target_delta=1e-5)[0]
def main(unused_argv):
logging.set_verbosity(logging.INFO)
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
raise ValueError('Number of microbatches should divide evenly batch_size')
# Split the training set into 60% and 40%, so we'll end up with 15,000 examples
# for training, 10,000 examples for validation and 25,000 examples for testing.
train_data, validation_data, test_data = tfds.load(
name="imdb_reviews",
split=('train[:60%]', 'train[60%:]', 'test'),
as_supervised=True)
train_examples_batch, train_labels_batch = next(iter(train_data.batch(10)))
print(train_examples_batch)
embedding = "https://tfhub.dev/google/tf2-preview/gnews-swivel-20dim/1"
hub_layer = hub.KerasLayer(embedding, input_shape=[],
dtype=tf.string, trainable=True)
hub_layer(train_examples_batch[:3])
model = tf.keras.Sequential()
model.add(hub_layer)
model.add(tf.keras.layers.Dense(16, activation='relu'))
model.add(tf.keras.layers.Dense(1, activation='sigmoid'))
model.summary()
if FLAGS.dpsgd:
optimizer = DPGradientDescentGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=FLAGS.microbatches,
learning_rate=FLAGS.learning_rate)
# Compute vector of per-example loss rather than its mean over a minibatch.
loss = tf.keras.losses.BinaryCrossentropy(
from_logits=True) # reduction=tf.compat.v1.losses.Reduction.NONE
else:
optimizer = GradientDescentOptimizer(learning_rate=FLAGS.learning_rate)
loss = tf.keras.losses.BinaryCrossentropy(from_logits=True)
# Compile model with Keras
model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])
# Train model with Keras
model.fit(train_data.shuffle(10000).batch(FLAGS.batch_size),
epochs=FLAGS.epochs,
validation_data=validation_data.batch(FLAGS.batch_size))
# Compute the privacy budget expended.
if FLAGS.dpsgd:
eps = compute_epsilon(FLAGS.epochs * 60000 // FLAGS.batch_size)
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
else:
print('Trained with vanilla non-private SGD optimizer')
if __name__ == '__main__':
app.run(main)