-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_cath.py
481 lines (417 loc) · 15.8 KB
/
train_cath.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import argparse
import logging
logging.basicConfig(level=logging.INFO)
import os
import torch
import pytorch_lightning as pl
from pytorch_lightning.callbacks.lr_monitor import LearningRateMonitor
from pytorch_lightning.callbacks.model_checkpoint import ModelCheckpoint
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.plugins.training_type import DDPPlugin
from openfold.config import model_config
from openfold.data.data_modules import OpenFoldDataModule
from openfold.model.model import AlphaFold
from openfold.np import residue_constants
from openfold.utils.argparse import remove_arguments
from openfold.utils.callbacks import EarlyStoppingVerbose
from openfold.utils.exponential_moving_average import ExponentialMovingAverage
from openfold.utils.loss import AlphaFoldLoss, lddt_ca, compute_drmsd
from openfold.utils.lr_schedulers import AlphaFoldLRScheduler
from openfold.utils.seed import seed_everything
from openfold.utils.superimposition import superimpose
from openfold.utils.tensor_utils import tensor_tree_map
from openfold.utils.validation_metrics import gdt_ts, gdt_ha
from openfold.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
import debugger
class OpenFoldWrapper(pl.LightningModule):
def __init__(self, config):
super(OpenFoldWrapper, self).__init__()
self.config = config
self.model = AlphaFold(config)
self.loss = AlphaFoldLoss(config.loss)
self.ema = ExponentialMovingAverage(
model=self.model, decay=config.ema.decay
)
self.cached_weights = None
def forward(self, batch):
return self.model(batch)
def _log(self, loss_breakdown, batch, outputs, train=True):
phase = "train" if train else "val"
for loss_name, indiv_loss in loss_breakdown.items():
self.log(
f"{phase}/{loss_name}",
indiv_loss,
on_step=train, on_epoch=(not train), logger=True,
)
if(train):
self.log(
f"{phase}/{loss_name}_epoch",
indiv_loss,
on_step=False, on_epoch=True, logger=True,
)
with torch.no_grad():
other_metrics = self._compute_validation_metrics(
batch,
outputs,
superimposition_metrics=(not train)
)
for k,v in other_metrics.items():
self.log(
f"{phase}/{k}",
v,
on_step=False, on_epoch=True, logger=True
)
def training_step(self, batch, batch_idx):
if(self.ema.device != batch["aatype"].device):
self.ema.to(batch["aatype"].device)
# Run the model
outputs = self(batch)
# Remove the recycling dimension
batch = tensor_tree_map(lambda t: t[..., -1], batch)
# Compute loss
loss, loss_breakdown = self.loss(
outputs, batch, _return_breakdown=True
)
# Log it
self._log(loss_breakdown, batch, outputs)
return loss
def on_before_zero_grad(self, *args, **kwargs):
self.ema.update(self.model)
def validation_step(self, batch, batch_idx):
# At the start of validation, load the EMA weights
if(self.cached_weights is None):
# model.state_dict() contains references to model weights rather
# than copies. Therefore, we need to clone them before calling
# load_state_dict().
clone_param = lambda t: t.detach().clone()
self.cached_weights = tensor_tree_map(clone_param, self.model.state_dict())
self.model.load_state_dict(self.ema.state_dict()["params"])
# Run the model
outputs = self(batch)
batch = tensor_tree_map(lambda t: t[..., -1], batch)
# Compute loss and other metrics
batch["use_clamped_fape"] = 0.
_, loss_breakdown = self.loss(
outputs, batch, _return_breakdown=True
)
self._log(loss_breakdown, batch, outputs, train=False)
def validation_epoch_end(self, _):
# Restore the model weights to normal
self.model.load_state_dict(self.cached_weights)
self.cached_weights = None
def _compute_validation_metrics(self,
batch,
outputs,
superimposition_metrics=False
):
metrics = {}
gt_coords = batch["all_atom_positions"].float() # [*, N, 37, 3]
pred_coords = outputs["final_atom_positions"].float() # [*, N, 37, 3]
all_atom_mask = batch["all_atom_mask"].float() # [*, N, 37]
# This is super janky for superimposition. Fix later
gt_coords_masked = gt_coords * all_atom_mask[..., None] # [*, N, 37, 3]
pred_coords_masked = pred_coords * all_atom_mask[..., None] # [*, N, 37, 3]
ca_pos = residue_constants.atom_order["CA"]
gt_coords_masked_ca = gt_coords_masked[..., ca_pos, :] # [*, N, 3]
pred_coords_masked_ca = pred_coords_masked[..., ca_pos, :] # [*, N, 3]
all_atom_mask_ca = all_atom_mask[..., ca_pos] # [*, N]
lddt_ca_score = lddt_ca(
pred_coords,
gt_coords,
all_atom_mask,
eps=self.config.globals.eps,
per_residue=False,
) # [*]
metrics["lddt_ca"] = lddt_ca_score
drmsd_ca_score = compute_drmsd(
pred_coords_masked_ca,
gt_coords_masked_ca,
mask=all_atom_mask_ca,
) # [*]
metrics["drmsd_ca"] = drmsd_ca_score
if(superimposition_metrics):
superimposed_pred, _ = superimpose(
gt_coords_masked_ca, pred_coords_masked_ca
) # [*, N, 3]
gdt_ts_score = gdt_ts(
superimposed_pred, gt_coords_masked_ca, all_atom_mask_ca
)
gdt_ha_score = gdt_ha(
superimposed_pred, gt_coords_masked_ca, all_atom_mask_ca
)
metrics["gdt_ts"] = gdt_ts_score
metrics["gdt_ha"] = gdt_ha_score
return metrics
def configure_optimizers(self) -> torch.optim.Adam:
optim_config = self.config.optimizer
# https://github.com/Lightning-AI/lightning/issues/5558
scheduler_config = self.config.scheduler
optimizer = torch.optim.Adam(
self.model.parameters(),
lr=optim_config.lr,
weight_decay=optim_config.weight_decay,
eps=optim_config.eps,
)
lr_scheduler = AlphaFoldLRScheduler(
optimizer,
max_lr=optim_config.lr,
**scheduler_config,
)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": lr_scheduler,
"interval": "step",
"frequency": 1,
"name": "AlphaFoldLRScheduler",
}
}
def on_load_checkpoint(self, checkpoint):
self.ema.load_state_dict(checkpoint["ema"])
def on_save_checkpoint(self, checkpoint):
checkpoint["ema"] = self.ema.state_dict()
def main(args):
if args.seed is not None:
seed_everything(args.seed)
config = model_config(
name=args.config_preset,
yaml_config_preset=args.yaml_config_preset,
train=True,
low_prec=(args.precision == 16),
)
model_module = OpenFoldWrapper(config)
if args.resume_from_ckpt and args.resume_model_weights_only:
sd = get_fp32_state_dict_from_zero_checkpoint(args.resume_from_ckpt)
sd = {k[len("module."):]:v for k,v in sd.items()}
model_module.load_state_dict(sd)
logging.info("Successfully loaded model weights...")
data_module = OpenFoldDataModule(
config=config.data,
batch_seed=args.seed,
**vars(args)
)
data_module.prepare_data()
data_module.setup()
callbacks = []
if args.checkpoint_every_epoch:
dirpath = os.path.join(
args.output_dir,
args.wandb_project,
args.wandb_version,
"checkpoints",
)
mc = ModelCheckpoint(
filename="epoch{epoch:02d}-step{step}-val_loss={val/loss:.3f}",
dirpath=dirpath,
auto_insert_metric_name=False,
monitor="val/loss",
mode="min",
every_n_epochs=1,
save_last=False,
save_top_k=50,
)
callbacks.append(mc)
if args.early_stopping:
es = EarlyStoppingVerbose(
monitor="val/loss",
min_delta=args.min_delta,
patience=args.patience,
verbose=False,
mode="min",
check_finite=True,
strict=True,
)
callbacks.append(es)
if args.log_lr:
lr_monitor = LearningRateMonitor(logging_interval="step")
callbacks.append(lr_monitor)
loggers = []
if args.wandb:
# https://docs.wandb.ai/ref/python/init
wdb_logger = WandbLogger(
name=args.experiment_name,
save_dir=args.output_dir,
version=args.wandb_version,
project=args.wandb_project,
offline=True,
**{"entity": args.wandb_entity}
)
loggers.append(wdb_logger)
wandb_log_dir = os.path.join(args.output_dir, "wandb")
if not os.path.exists(wandb_log_dir):
logging.info(f"generating directory for wandb logging located at {wandb_log_dir}")
os.makedirs(wandb_log_dir, exist_ok=True)
if (args.gpus is not None and args.gpus > 1) or args.num_nodes > 1:
strategy = DDPPlugin(find_unused_parameters=False)
else:
strategy = None
trainer = pl.Trainer.from_argparse_args(
args,
default_root_dir=args.output_dir,
strategy=strategy,
callbacks=callbacks,
logger=loggers,
)
if args.resume_model_weights_only:
ckpt_path = None
else:
ckpt_path = args.resume_from_ckpt
trainer.fit(
model_module,
datamodule=data_module,
ckpt_path=ckpt_path,
)
def bool_type(bool_str: str):
bool_str_lower = bool_str.lower()
if bool_str_lower in ('false', 'f', 'no', 'n', '0'):
return False
elif bool_str_lower in ('true', 't', 'yes', 'y', '1'):
return True
else:
raise ValueError(f'Cannot interpret {bool_str} as bool')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"train_data_dir", type=str,
help="Directory containing training mmCIF files"
)
parser.add_argument(
"output_dir", type=str,
help=(
"Directory in which to output checkpoints, logs, etc. Ignored "
"if not on rank 0"
)
)
parser.add_argument(
"--ss_file", type=str, default=None,
help="Path of the secondary structure data"
)
parser.add_argument(
"--val_data_dir", type=str, default=None,
help="Directory containing validation mmCIF files"
)
parser.add_argument(
"--predict_data_dir", type=str, default=None,
help="Directory containing validation mmCIF files"
)
parser.add_argument(
"--seed", type=int, default=None,
help="Random seed"
)
parser.add_argument(
"--early_stopping", type=bool_type, default=False,
help="Whether to stop training when validation loss fails to decrease"
)
parser.add_argument(
"--min_delta", type=float, default=0,
help=(
"The smallest decrease in validation loss that counts as an "
"improvement for the purposes of early stopping"
)
)
parser.add_argument(
"--patience", type=int, default=3,
help="Early stopping patience"
)
parser.add_argument(
"--resume_from_ckpt", type=str, default=None,
help="Path to a model checkpoint from which to restore training state"
)
parser.add_argument(
"--resume_model_weights_only", type=bool_type, default=False,
help="Whether to load just model weights as opposed to training state"
)
parser.add_argument(
"--train_epoch_len", type=int, default=None,
help=(
"The virtual length of each training epoch. Stochastic filtering "
"of training data means that training datasets have no "
"well-defined length. This virtual length affects frequency of "
"validation & checkpointing (by default, one of each per epoch)."
"If set to None, use the length of the dataset as epoch_len."
)
)
parser.add_argument(
"--checkpoint_every_epoch", type=bool_type, default=True,
help="Whether to checkpoint at the end of every training epoch"
)
parser.add_argument(
"--log_lr", type=bool_type, default=True,
help="Whether to log the actual learning rate"
)
parser.add_argument(
"--wandb", type=bool_type, default=False,
help="Whether to log metrics to Weights & Biases"
)
parser.add_argument(
"--wandb_entity", type=str, default=None,
help="wandb username or team name to which runs are attributed"
)
parser.add_argument(
"--wandb_version", type=str, default=None,
help="Sets the version, mainly used to resume a previous run."
)
parser.add_argument(
"--wandb_project", type=str, default=None,
help="Name of the wandb project to which this run will belong"
)
parser.add_argument(
"--experiment_name", type=str, default=None,
help="Name of the current experiment. Used for wandb logging"
)
parser.add_argument(
"--config_preset", type=str, default=None,
help=(
"Config setting. Choose e.g. 'initial_training', 'finetuning', "
"'model_1', etc. By default, the actual values in the config are "
"used."
)
)
parser.add_argument(
"--yaml_config_preset", type=str, default=None,
help=(
"A path to a yaml file that contains the updated config setting. "
"If it is set, the config_preset will be overwrriten as the basename "
"of the yaml_config_preset."
)
)
parser = pl.Trainer.add_argparse_args(parser)
# Disable the initial validation pass
parser.set_defaults(
num_sanity_val_steps=0,
)
# Remove some buggy/redundant arguments introduced by the Trainer
remove_arguments(
parser,
[
"--accelerator",
"--resume_from_checkpoint",
"--reload_dataloaders_every_epoch",
"--reload_dataloaders_every_n_epochs",
]
)
args = parser.parse_args()
if(args.seed is None and
((args.gpus is not None and args.gpus > 1) or
(args.num_nodes is not None and args.num_nodes > 1))):
raise ValueError("For distributed training, --seed must be specified")
if(args.config_preset is None and args.yaml_config_preset is None):
raise ValueError(
"Either --config_preset or --yaml_config_preset should be specified."
)
if(args.yaml_config_preset is not None):
if not os.path.exists(args.yaml_config_preset):
raise FileNotFoundError(f"{os.path.abspath(args.yaml_config_preset)}")
args.config_preset = os.path.splitext(
os.path.basename(args.yaml_config_preset)
)[0]
logging.info(f"the config_preset is set as {args.config_preset} by yaml_config_preset.")
# process wandb args
if args.wandb:
if args.wandb_version is not None:
args.wandb_version = f"{args.config_preset}-{args.wandb_version}"
if args.experiment_name is None:
args.experiment_name = args.wandb_version
# This re-applies the training-time filters at the beginning of every epoch
args.reload_dataloaders_every_n_epochs = 1
main(args)