forked from chatchat-space/Langchain-Chatchat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_config.py.example
167 lines (134 loc) · 6.68 KB
/
model_config.py.example
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
import logging
import torch
# 日志格式
LOG_FORMAT = "%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s"
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logging.basicConfig(format=LOG_FORMAT)
# 在以下字典中修改属性值,以指定本地embedding模型存储位置
# 如将 "text2vec": "GanymedeNil/text2vec-large-chinese" 修改为 "text2vec": "User/Downloads/text2vec-large-chinese"
# 此处请写绝对路径
embedding_model_dict = {
"ernie-tiny": "nghuyong/ernie-3.0-nano-zh",
"ernie-base": "nghuyong/ernie-3.0-base-zh",
"text2vec-base": "shibing624/text2vec-base-chinese",
"text2vec": "GanymedeNil/text2vec-large-chinese",
"text2vec-paraphrase": "shibing624/text2vec-base-chinese-paraphrase",
"text2vec-sentence": "shibing624/text2vec-base-chinese-sentence",
"text2vec-multilingual": "shibing624/text2vec-base-multilingual",
"m3e-small": "moka-ai/m3e-small",
"m3e-base": "moka-ai/m3e-base",
"m3e-large": "moka-ai/m3e-large",
"bge-small-zh": "BAAI/bge-small-zh",
"bge-base-zh": "BAAI/bge-base-zh",
"bge-large-zh": "BAAI/bge-large-zh",
"bge-large-zh-noinstruct": "BAAI/bge-large-zh-noinstruct",
"text-embedding-ada-002": os.environ.get("OPENAI_API_KEY")
}
# 选用的 Embedding 名称
EMBEDDING_MODEL = "m3e-base"
# Embedding 模型运行设备
EMBEDDING_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
llm_model_dict = {
"chatglm-6b": {
"local_model_path": "THUDM/chatglm-6b",
"api_base_url": "http://localhost:8888/v1", # "name"修改为fastchat服务中的"api_base_url"
"api_key": "EMPTY"
},
"chatglm2-6b": {
"local_model_path": "THUDM/chatglm2-6b",
"api_base_url": "http://localhost:8888/v1", # URL需要与运行fastchat服务端的server_config.FSCHAT_OPENAI_API一致
"api_key": "EMPTY"
},
"chatglm2-6b-32k": {
"local_model_path": "THUDM/chatglm2-6b-32k", # "THUDM/chatglm2-6b-32k",
"api_base_url": "http://localhost:8888/v1", # "URL需要与运行fastchat服务端的server_config.FSCHAT_OPENAI_API一致
"api_key": "EMPTY"
},
# 调用chatgpt时如果报出: urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.openai.com', port=443):
# Max retries exceeded with url: /v1/chat/completions
# 则需要将urllib3版本修改为1.25.11
# 如果依然报urllib3.exceptions.MaxRetryError: HTTPSConnectionPool,则将https改为http
# 参考https://zhuanlan.zhihu.com/p/350015032
# 如果报出:raise NewConnectionError(
# urllib3.exceptions.NewConnectionError: <urllib3.connection.HTTPSConnection object at 0x000001FE4BDB85E0>:
# Failed to establish a new connection: [WinError 10060]
# 则是因为内地和香港的IP都被OPENAI封了,需要切换为日本、新加坡等地
# 如果出现WARNING: Retrying langchain.chat_models.openai.acompletion_with_retry.<locals>._completion_with_retry in
# 4.0 seconds as it raised APIConnectionError: Error communicating with OpenAI.
# 需要添加代理访问(正常开的代理软件可能会拦截不上)需要设置配置openai_proxy 或者 使用环境遍历OPENAI_PROXY 进行设置
"gpt-3.5-turbo": {
"local_model_path": "gpt-3.5-turbo",
"api_base_url": "https://api.openai.com/v1",
"api_key": os.environ.get("OPENAI_API_KEY"),
"openai_proxy": os.environ.get("OPENAI_PROXY")
},
}
# LLM 名称
LLM_MODEL = "chatglm2-6b"
# LLM 运行设备
LLM_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# 日志存储路径
LOG_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "logs")
if not os.path.exists(LOG_PATH):
os.mkdir(LOG_PATH)
# 知识库默认存储路径
KB_ROOT_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "knowledge_base")
# 数据库默认存储路径。
# 如果使用sqlite,可以直接修改DB_ROOT_PATH;如果使用其它数据库,请直接修改SQLALCHEMY_DATABASE_URI。
DB_ROOT_PATH = os.path.join(KB_ROOT_PATH, "info.db")
SQLALCHEMY_DATABASE_URI = f"sqlite:///{DB_ROOT_PATH}"
# 可选向量库类型及对应配置
kbs_config = {
"faiss": {
},
"milvus": {
"host": "127.0.0.1",
"port": "19530",
"user": "",
"password": "",
"secure": False,
},
"pg": {
"connection_uri": "postgresql://postgres:postgres@127.0.0.1:5432/langchain_chatchat",
}
}
# 默认向量库类型。可选:faiss, milvus, pg.
DEFAULT_VS_TYPE = "faiss"
# 缓存向量库数量
CACHED_VS_NUM = 1
# 知识库中单段文本长度
CHUNK_SIZE = 250
# 知识库中相邻文本重合长度
OVERLAP_SIZE = 50
# 知识库匹配向量数量
VECTOR_SEARCH_TOP_K = 5
# 知识库匹配相关度阈值,取值范围在0-1之间,SCORE越小,相关度越高,取到1相当于不筛选,建议设置在0.5左右
SCORE_THRESHOLD = 1
# 搜索引擎匹配结题数量
SEARCH_ENGINE_TOP_K = 5
# nltk 模型存储路径
NLTK_DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(__file__)), "nltk_data")
# 基于本地知识问答的提示词模版(使用Jinja2语法,简单点就是用双大括号代替f-string的单大括号
PROMPT_TEMPLATE = """<指令>根据已知信息,简洁和专业的来回答问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题”,不允许在答案中添加编造成分,答案请使用中文。 </指令>
<已知信息>{{ context }}</已知信息>
<问题>{{ question }}</问题>"""
# API 是否开启跨域,默认为False,如果需要开启,请设置为True
# is open cross domain
OPEN_CROSS_DOMAIN = False
# Bing 搜索必备变量
# 使用 Bing 搜索需要使用 Bing Subscription Key,需要在azure port中申请试用bing search
# 具体申请方式请见
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/create-bing-search-service-resource
# 使用python创建bing api 搜索实例详见:
# https://learn.microsoft.com/en-us/bing/search-apis/bing-web-search/quickstarts/rest/python
BING_SEARCH_URL = "https://api.bing.microsoft.com/v7.0/search"
# 注意不是bing Webmaster Tools的api key,
# 此外,如果是在服务器上,报Failed to establish a new connection: [Errno 110] Connection timed out
# 是因为服务器加了防火墙,需要联系管理员加白名单,如果公司的服务器的话,就别想了GG
BING_SUBSCRIPTION_KEY = ""
# 是否开启中文标题加强,以及标题增强的相关配置
# 通过增加标题判断,判断哪些文本为标题,并在metadata中进行标记;
# 然后将文本与往上一级的标题进行拼合,实现文本信息的增强。
ZH_TITLE_ENHANCE = False