-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_param_tuner.py
50 lines (45 loc) · 2.31 KB
/
run_param_tuner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# =========================================================================
# Copyright (C) 2022. Huawei Technologies Co., Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========================================================================
from datetime import datetime
import gc
import argparse
import fuxictr_version
from utils import autotuner
import warnings
warnings.filterwarnings("ignore")
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default=f'./config/DIVAN_ebnerd_large_x1_tuner_config_01.yaml',
help='The config file for para tuning.')
parser.add_argument('--tag', type=str, default=None,
help='Use the tag to determine which expid to run (e.g. 001 for the first expid).')
parser.add_argument('--gpu', nargs='+', default=[0], help='The list of gpu indexes, -1 for cpu.')
parser.add_argument('--algorithm', type=str, default='grid', choices=['grid', 'tpe'],
help='The hyperparameter search algorithm to use (grid or tpe).')
parser.add_argument('--max_evals', type=int, default=20, help='The maximum number of evaluations for TPE.')
parser.add_argument('--script', type=str, default='run_expid_v3.py', help='The script file to run the expid.')
args = vars(parser.parse_args())
gpu_list = args['gpu']
expid_tag = args['tag']
algorithm = args['algorithm']
max_evals = args['max_evals']
script = args['script']
# generate parameter space combinations
config_dir = autotuner.enumerate_params(args['config'])
if algorithm == 'grid':
autotuner.grid_search(config_dir, gpu_list, expid_tag, script=script)
elif algorithm == 'tpe':
best = autotuner.tpe_search(config_dir, gpu_list, script=script, max_evals=max_evals)