forked from Bosma/Scheduler
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Scheduler.h
221 lines (178 loc) · 8.09 KB
/
Scheduler.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
#pragma once
#include <iomanip>
#include <map>
#include "ctpl_stl.h"
#include "InterruptableSleep.h"
#include "Cron.h"
namespace Bosma {
using Clock = std::chrono::system_clock;
class Task {
public:
explicit Task(std::function<void()> &&f, bool recur = false, bool interval = false) :
f(std::move(f)), recur(recur), interval(interval) {}
virtual Clock::time_point get_new_time() const = 0;
std::function<void()> f;
bool recur;
bool interval;
};
class InTask : public Task {
public:
explicit InTask(std::function<void()> &&f) : Task(std::move(f)) {}
// dummy time_point because it's not used
Clock::time_point get_new_time() const override { return Clock::time_point(Clock::duration(0)); }
};
class EveryTask : public Task {
public:
EveryTask(Clock::duration time, std::function<void()> &&f, bool interval = false) :
Task(std::move(f), true, interval), time(time) {}
Clock::time_point get_new_time() const override {
return Clock::now() + time;
};
Clock::duration time;
};
class CronTask : public Task {
public:
CronTask(const std::string &expression, std::function<void()> &&f) : Task(std::move(f), true),
cron(expression) {}
Clock::time_point get_new_time() const override {
return cron.cron_to_next();
};
Cron cron;
};
inline bool try_parse(std::tm &tm, const std::string &expression, const std::string &format) {
std::stringstream ss(expression);
return !(ss >> std::get_time(&tm, format.c_str())).fail();
}
class Scheduler {
public:
explicit Scheduler(unsigned int max_n_tasks = 4) : done(false), threads(max_n_tasks + 1) {
threads.push([this](int) {
while (!done) {
if (tasks.empty()) {
sleeper.sleep();
} else {
auto time_of_first_task = (*tasks.begin()).first;
sleeper.sleep_until(time_of_first_task);
}
manage_tasks();
}
});
}
Scheduler(const Scheduler &) = delete;
Scheduler(Scheduler &&) noexcept = delete;
Scheduler &operator=(const Scheduler &) = delete;
Scheduler &operator=(Scheduler &&) noexcept = delete;
~Scheduler() {
done = true;
sleeper.interrupt();
}
template<typename _Callable, typename... _Args>
void in(const Clock::time_point time, _Callable &&f, _Args &&... args) {
std::shared_ptr<Task> t = std::make_shared<InTask>(
std::bind(std::forward<_Callable>(f), std::forward<_Args>(args)...));
add_task(time, std::move(t));
}
template<typename _Callable, typename... _Args>
void in(const Clock::duration time, _Callable &&f, _Args &&... args) {
in(Clock::now() + time, std::forward<_Callable>(f), std::forward<_Args>(args)...);
}
template<typename _Callable, typename... _Args>
void at(const std::string &time, _Callable &&f, _Args &&... args) {
// get current time as a tm object
auto time_now = Clock::to_time_t(Clock::now());
std::tm tm = *std::localtime(&time_now);
// our final time as a time_point
Clock::time_point tp;
if (try_parse(tm, time, "%H:%M:%S")) {
// convert tm back to time_t, then to a time_point and assign to final
tp = Clock::from_time_t(std::mktime(&tm));
// if we've already passed this time, the user will mean next day, so add a day.
if (Clock::now() >= tp)
tp += std::chrono::hours(24);
} else if (try_parse(tm, time, "%Y-%m-%d %H:%M:%S")) {
tp = Clock::from_time_t(std::mktime(&tm));
} else if (try_parse(tm, time, "%Y/%m/%d %H:%M:%S")) {
tp = Clock::from_time_t(std::mktime(&tm));
} else {
// could not parse time
throw std::runtime_error("Cannot parse time string: " + time);
}
in(tp, std::forward<_Callable>(f), std::forward<_Args>(args)...);
}
template<typename _Callable, typename... _Args>
void every(const Clock::duration time, _Callable &&f, _Args &&... args) {
std::shared_ptr<Task> t = std::make_shared<EveryTask>(time, std::bind(std::forward<_Callable>(f),
std::forward<_Args>(args)...));
auto next_time = t->get_new_time();
add_task(next_time, std::move(t));
}
// expression format:
// from https://en.wikipedia.org/wiki/Cron#Overview
// ┌───────────── minute (0 - 59)
// │ ┌───────────── hour (0 - 23)
// │ │ ┌───────────── day of month (1 - 31)
// │ │ │ ┌───────────── month (1 - 12)
// │ │ │ │ ┌───────────── day of week (0 - 6) (Sunday to Saturday)
// │ │ │ │ │
// │ │ │ │ │
// * * * * *
template<typename _Callable, typename... _Args>
void cron(const std::string &expression, _Callable &&f, _Args &&... args) {
std::shared_ptr<Task> t = std::make_shared<CronTask>(expression, std::bind(std::forward<_Callable>(f),
std::forward<_Args>(args)...));
auto next_time = t->get_new_time();
add_task(next_time, std::move(t));
}
template<typename _Callable, typename... _Args>
void interval(const Clock::duration time, _Callable &&f, _Args &&... args) {
std::shared_ptr<Task> t = std::make_shared<EveryTask>(time, std::bind(std::forward<_Callable>(f),
std::forward<_Args>(args)...), true);
add_task(Clock::now(), std::move(t));
}
private:
std::atomic<bool> done;
Bosma::InterruptableSleep sleeper;
std::multimap<Clock::time_point, std::shared_ptr<Task>> tasks;
std::mutex lock;
ctpl::thread_pool threads;
void add_task(const Clock::time_point time, std::shared_ptr<Task> t) {
std::lock_guard<std::mutex> l(lock);
tasks.emplace(time, std::move(t));
sleeper.interrupt();
}
void manage_tasks() {
std::lock_guard<std::mutex> l(lock);
auto end_of_tasks_to_run = tasks.upper_bound(Clock::now());
// if there are any tasks to be run and removed
if (end_of_tasks_to_run != tasks.begin()) {
// keep track of tasks that will be re-added
decltype(tasks) recurred_tasks;
// for all tasks that have been triggered
for (auto i = tasks.begin(); i != end_of_tasks_to_run; ++i) {
auto &task = (*i).second;
if (task->interval) {
// if it's an interval task, only add the task back after f() is completed
threads.push([this, task](int) {
task->f();
// no risk of race-condition,
// add_task() will wait for manage_tasks() to release lock
add_task(task->get_new_time(), task);
});
} else {
threads.push([task](int) {
task->f();
});
// calculate time of next run and add the new task to the tasks to be recurred
if (task->recur)
recurred_tasks.emplace(task->get_new_time(), std::move(task));
}
}
// remove the completed tasks
tasks.erase(tasks.begin(), end_of_tasks_to_run);
// re-add the tasks that are recurring
for (auto &task : recurred_tasks)
tasks.emplace(task.first, std::move(task.second));
}
}
};
}