-
Notifications
You must be signed in to change notification settings - Fork 12
/
main.py
32 lines (29 loc) · 1.35 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import pathlib
from utils.downloads import attempt_download
import torch
import torch.onnx
import torchvision.io
def download_weights():
for x in ['s', 'm', 'l', 'x']:
attempt_download(f'yolov5{x}.pt')
directory = pathlib.Path(__file__).parent.resolve()
# setting device on GPU if available, else CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
print('testing pytorch with cpu first....')
my_tensor = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.float32, device="cpu")
print('result is:', my_tensor)
#Additional Info when using cuda
if device.type == 'cuda':
print('pytorch version used:', torch.__version__)
print('pytorch and cuda is working:', torch.cuda.get_device_name(0))
print('pytorch and cuda is active:', print(torch.cuda.is_available()))
print('Memory Usage:')
print('Allocated:', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB')
print('Cached: ', round(torch.cuda.memory_reserved(0)/1024**3,1), 'GB')
my_tensor = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.float32, device="cuda")
print('testing pytorch with cuda...result is:', my_tensor)
print(str(directory) + "\\data\\images\\cow_osrs_test.PNG")
ok = torchvision.io.read_image(str(directory) + "\\data\\images\\bus.jpg")
print(ok)
download_weights()