forked from pkhungurn/talking-head-anime-demo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
util.py
98 lines (68 loc) · 2.83 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
import PIL.Image
import numpy
import torch
from torch import Tensor
def is_power2(x):
return x != 0 and ((x & (x - 1)) == 0)
def torch_save(content, file_name):
os.makedirs(os.path.dirname(file_name), exist_ok=True)
with open(file_name, 'wb') as f:
torch.save(content, f)
def torch_load(file_name, **kwargs):
with open(file_name, 'rb') as f:
return torch.load(f, **kwargs)
def srgb_to_linear(x):
x = numpy.clip(x, 0.0, 1.0)
return numpy.where(x <= 0.04045, x / 12.92, ((x + 0.055) / 1.055) ** 2.4)
def linear_to_srgb(x):
x = numpy.clip(x, 0.0, 1.0)
return numpy.where(x <= 0.003130804953560372, x * 12.92, 1.055 * (x ** (1.0 / 2.4)) - 0.055)
def save_rng_state(file_name):
rng_state = torch.get_rng_state()
torch_save(rng_state, file_name)
def load_rng_state(file_name):
rng_state = torch_load(file_name)
torch.set_rng_state(rng_state)
def optimizer_to_device(optim, device):
for state in optim.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
def rgba_to_numpy_image_greenscreen(torch_image: Tensor):
height = torch_image.shape[1]
width = torch_image.shape[2]
numpy_image = (torch_image.numpy().reshape(4, height * width).transpose().reshape(height, width, 4) + 1.0) * 0.5
rgb_image = linear_to_srgb(numpy_image[:, :, 0:3])
a_image = numpy_image[:, :, 3]
rgb_image[:, :, 0:3] = rgb_image[:, :, 0:3] * a_image.reshape(a_image.shape[0], a_image.shape[1], 1)
rgb_image[:, :, 1] = rgb_image[:, :, 1] + (1 - a_image)
return rgb_image
def rgba_to_numpy_image(torch_image: Tensor):
height = torch_image.shape[1]
width = torch_image.shape[2]
numpy_image = (torch_image.numpy().reshape(4, height * width).transpose().reshape(height, width, 4) + 1.0) * 0.5
rgb_image = linear_to_srgb(numpy_image[:, :, 0:3])
a_image = numpy_image[:, :, 3]
rgba_image = numpy.concatenate((rgb_image, a_image.reshape(height, width, 1)), axis=2)
return rgba_image
def extract_pytorch_image_from_filelike(file):
pil_image = PIL.Image.open(file)
numpy_image = numpy.asarray(pil_image) / 255.0
h, w, c = numpy_image.shape
image = numpy_image.reshape(h, w, c)
image[:, :, 0:3] = srgb_to_linear(image[:, :, 0:3])
image = image \
.reshape(h * w, c) \
.transpose() \
.reshape(c, h, w)
torch_image = torch.from_numpy(image).float() * 2.0 - 1.0
return torch_image
def extract_numpy_image_from_filelike(file):
pil_image = PIL.Image.open(file)
image_size = pil_image.width
image = (numpy.asarray(pil_image) / 255.0).reshape(image_size, image_size, 4)
image[:, :, 0:3] = srgb_to_linear(image[:, :, 0:3])
return image
def create_parent_dir(file_name):
os.makedirs(os.path.dirname(file_name), exist_ok=True)