Skip to content

Latest commit

 

History

History

run_exp

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Run node feature attack experiments

Here we list the commands to reproduce the results for node feature attack experiments. Each of the experiment in run_node.py loops over seed = 0, 1, 2, 3, 4. After running the experiments with the model saved under GIB/results/, use the script experiments/GIB_node_analysis.ipynb (Section 3) to perform node feature evasive attacks and obtain the results.

Cora

Cora with GIB-Cat:

python run_node.py --exp_id=node1.0 --data_type=Cora --model_type=GAT --beta1=0.01 --beta2=0.01 --struct_dropout_mode='\("DNsampling","multi-categorical-sum",0.1,2,2\)' --gpuid=0

Cora with AIB-Cat:

python run_node.py --exp_id=node1.0 --data_type=Cora --model_type=GAT --beta1=-1 --beta2=0.01 --struct_dropout_mode='\("DNsampling","multi-categorical-sum",0.1,2,2\)' --gpuid=0

Cora with GIB-Bern:

python run_node.py --exp_id=node1.0 --data_type=Cora --model_type=GAT --beta1=0.001 --beta2=0.01 --struct_dropout_mode='\("DNsampling","Bernoulli",0.05,0.5,"norm",2\)' --gpuid=0

Cora with AIB-Bern:

python run_node.py --exp_id=node1.0 --data_type=Cora --model_type=GAT --beta1=-1 --beta2=0.01 --struct_dropout_mode='\("DNsampling","Bernoulli",0.05,0.5,"norm",2\)' --gpuid=0

Cora with GAT:

python run_node.py --exp_id=node1.0 --data_type=Cora --model_type=GAT --beta1=-1 --beta2=-1 --struct_dropout_mode='\("standard",0.6\)' --gpuid=0

Cora with GCN:

python run_node.py --exp_id=node1.0 --data_type=Cora --model_type=GCN --beta1=-1 --beta2=-1 --gpuid=0

Cora with GCNJaccard:

python run_node.py --exp_id=node1.0 --data_type=Cora --model_type=GCNJaccard --beta1=-1 --beta2=-1 --latent_size=16 --lr=1e-2 --weight_decay=5e-4 --threshold=0.05 --gpuid=0

Cora with RGCN:

python run_node.py --exp_id=node1.0 --data_type=Cora --model_type=RGCN --beta1=5e-4 --beta2=-1 --latent_size=64 --lr=1e-2 --weight_decay=5e-4 --gamma=0.3 --gpuid=0

Pubmed

Pubmed with GIB-Cat:

python run_node.py --exp_id=node1.0 --data_type=Pubmed --model_type=GAT --beta1=0.001 --beta2=0.01 --struct_dropout_mode='\("DNsampling","multi-categorical-sum",1,3,2\)' --gpuid=0

Pubmed with AIB-Cat:

python run_node.py --exp_id=node1.0 --data_type=Pubmed --model_type=GAT --beta1=-1 --beta2=0.01 --struct_dropout_mode='\("DNsampling","multi-categorical-sum",1,3,2\)' --gpuid=0

Pubmed with GIB-Bern:

python run_node.py --exp_id=node1.0 --data_type=Pubmed --model_type=GAT --beta1=0.01 --beta2=0.01 --struct_dropout_mode='\("Nsampling","Bernoulli",0.05,0.5,"norm"\)' --gpuid=0

Pubmed with AIB-Bern:

python run_node.py --exp_id=node1.0 --data_type=Pubmed --model_type=GAT --beta1=-1 --beta2=0.01 --struct_dropout_mode='\("Nsampling","Bernoulli",0.05,0.5,"norm"\)' --gpuid=0

Pubmed with GAT:

python run_node.py --exp_id=node1.0 --data_type=Pubmed --model_type=GAT --beta1=-1 --beta2=-1 --struct_dropout_mode='\("standard",0.6\)' --gpuid=0

Pubmed with GCN:

python run_node.py --exp_id=node1.0 --data_type=Pubmed --model_type=GCN --beta1=-1 --beta2=-1 --gpuid=0

Pubmed with GCNJaccard:

python run_node.py --exp_id=node1.0 --data_type=Pubmed --model_type=GCNJaccard --beta1=-1 --beta2=-1 --latent_size=16 --lr=1e-2 --weight_decay=5e-4 --threshold=0.05 --gpuid=0

Pubmed with RGCN:

python run_node.py --exp_id=node1.0 --data_type=Pubmed --model_type=RGCN --beta1=5e-4 --beta2=-1 --latent_size=16 --lr=1e-2 --weight_decay=5e-4 --gamma=0.1 --gpuid=0

Citeseer

Citeseer with GIB-Cat:

python run_node.py --exp_id=node1.0 --data_type=citeseer --model_type=GAT --beta1=0.001 --beta2=0.01 --struct_dropout_mode='\("DNsampling","multi-categorical-sum",0.1,2,2\)' --gpuid=0

Citeseer with AIB-Cat:

python run_node.py --exp_id=node1.0 --data_type=citeseer --model_type=GAT --beta1=-1 --beta2=0.01 --struct_dropout_mode='\("DNsampling","multi-categorical-sum",0.1,2,2\)' --gpuid=0

Citeseer with GIB-Bern:

python run_node.py --exp_id=node1.0 --data_type=citeseer --model_type=GAT --beta1=0.1 --beta2=0.01 --struct_dropout_mode='\("DNsampling","Bernoulli",0.05,0.5,"norm",2\)' --gpuid=0

Citeseer with AIB-Bern:

python run_node.py --exp_id=node1.0 --data_type=citeseer --model_type=GAT --beta1=-1 --beta2=0.01 --struct_dropout_mode='\("DNsampling","Bernoulli",0.05,0.5,"norm",2\)' --gpuid=0

Citeseer with GAT:

python run_node.py --exp_id=node1.0 --data_type=citeseer --model_type=GAT --beta1=-1 --beta2=-1 --struct_dropout_mode='\("standard",0.6\)' --gpuid=0

Citeseer with GCN:

python run_node.py --exp_id=node1.0 --data_type=citeseer --model_type=GCN --beta1=-1 --beta2=-1 --gpuid=0

Citeseer with GCNJaccard:

python run_node.py --exp_id=node1.0 --data_type=citeseer --model_type=GCNJaccard --beta1=-1 --beta2=-1 --latent_size=16 --lr=1e-2 --weight_decay=5e-4 --threshold=0.05 --gpuid=0

Citeseer with RGCN:

python run_node.py --exp_id=node1.0 --data_type=citeseer --model_type=RGCN --beta1=5e-4 --beta2=-1 --latent_size=64 --lr=1e-2 --weight_decay=5e-4 --gamma=0.3 --gpuid=0