-
Notifications
You must be signed in to change notification settings - Fork 401
/
rgnn.py
462 lines (385 loc) · 18.3 KB
/
rgnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
import argparse
import glob
import os
import os.path as osp
import time
from typing import List, NamedTuple, Optional
import numpy as np
import torch
import torch.nn.functional as F
from ogb.lsc import MAG240MDataset, MAG240MEvaluator
import pytorch_lightning
from pytorch_lightning import (LightningDataModule, LightningModule, Trainer,
seed_everything)
from pytorch_lightning.callbacks import ModelCheckpoint
WITHOUT_LIGHTNING_V2 = int(pytorch_lightning.__version__.split('.')[0]) < 2
from torchmetrics import Accuracy
from torch import Tensor
from torch.nn import BatchNorm1d, Dropout, Linear, ModuleList, ReLU, Sequential
from torch.optim.lr_scheduler import StepLR
from torch_geometric.data import NeighborSampler
from torch_geometric.nn import GATConv, SAGEConv
from torch_sparse import SparseTensor
from tqdm.auto import tqdm
from root import ROOT
class Batch(NamedTuple):
x: Tensor
y: Tensor
adjs_t: List[SparseTensor]
def to(self, *args, **kwargs):
return Batch(
x=self.x.to(*args, **kwargs),
y=self.y.to(*args, **kwargs),
adjs_t=[adj_t.to(*args, **kwargs) for adj_t in self.adjs_t],
)
def get_col_slice(x, start_row_idx, end_row_idx, start_col_idx, end_col_idx):
outs = []
chunk = 100000
for i in tqdm(range(start_row_idx, end_row_idx, chunk)):
j = min(i + chunk, end_row_idx)
outs.append(x[i:j, start_col_idx:end_col_idx].copy())
return np.concatenate(outs, axis=0)
def save_col_slice(x_src, x_dst, start_row_idx, end_row_idx, start_col_idx,
end_col_idx):
assert x_src.shape[0] == end_row_idx - start_row_idx
assert x_src.shape[1] == end_col_idx - start_col_idx
chunk, offset = 100000, start_row_idx
for i in tqdm(range(0, end_row_idx - start_row_idx, chunk)):
j = min(i + chunk, end_row_idx - start_row_idx)
x_dst[offset + i:offset + j, start_col_idx:end_col_idx] = x_src[i:j]
class MAG240M(LightningDataModule):
def __init__(self, data_dir: str, batch_size: int, sizes: List[int],
in_memory: bool = False):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.sizes = sizes
self.in_memory = in_memory
@property
def num_features(self) -> int:
return 768
@property
def num_classes(self) -> int:
return 153
@property
def num_relations(self) -> int:
return 5
def prepare_data(self):
dataset = MAG240MDataset(self.data_dir)
path = f'{dataset.dir}/paper_to_paper_symmetric.pt'
if not osp.exists(path): # Will take approximately 5 minutes...
t = time.perf_counter()
print('Converting adjacency matrix...', end=' ', flush=True)
edge_index = dataset.edge_index('paper', 'cites', 'paper')
edge_index = torch.from_numpy(edge_index)
adj_t = SparseTensor(
row=edge_index[0], col=edge_index[1],
sparse_sizes=(dataset.num_papers, dataset.num_papers),
is_sorted=True)
torch.save(adj_t.to_symmetric(), path)
print(f'Done! [{time.perf_counter() - t:.2f}s]')
path = f'{dataset.dir}/full_adj_t.pt'
if not osp.exists(path): # Will take approximately 16 minutes...
t = time.perf_counter()
print('Merging adjacency matrices...', end=' ', flush=True)
row, col, _ = torch.load(
f'{dataset.dir}/paper_to_paper_symmetric.pt').coo()
rows, cols = [row], [col]
edge_index = dataset.edge_index('author', 'writes', 'paper')
row, col = torch.from_numpy(edge_index)
row += dataset.num_papers
rows += [row, col]
cols += [col, row]
edge_index = dataset.edge_index('author', 'institution')
row, col = torch.from_numpy(edge_index)
row += dataset.num_papers
col += dataset.num_papers + dataset.num_authors
rows += [row, col]
cols += [col, row]
edge_types = [
torch.full(x.size(), i, dtype=torch.int8)
for i, x in enumerate(rows)
]
row = torch.cat(rows, dim=0)
del rows
col = torch.cat(cols, dim=0)
del cols
N = (dataset.num_papers + dataset.num_authors +
dataset.num_institutions)
perm = (N * row).add_(col).numpy().argsort()
perm = torch.from_numpy(perm)
row = row[perm]
col = col[perm]
edge_type = torch.cat(edge_types, dim=0)[perm]
del edge_types
full_adj_t = SparseTensor(row=row, col=col, value=edge_type,
sparse_sizes=(N, N), is_sorted=True)
torch.save(full_adj_t, path)
print(f'Done! [{time.perf_counter() - t:.2f}s]')
path = f'{dataset.dir}/full_feat.npy'
done_flag_path = f'{dataset.dir}/full_feat_done.txt'
if not osp.exists(done_flag_path): # Will take ~3 hours...
t = time.perf_counter()
print('Generating full feature matrix...')
node_chunk_size = 100000
dim_chunk_size = 64
N = (dataset.num_papers + dataset.num_authors +
dataset.num_institutions)
paper_feat = dataset.paper_feat
x = np.memmap(path, dtype=np.float16, mode='w+',
shape=(N, self.num_features))
print('Copying paper features...')
for i in tqdm(range(0, dataset.num_papers, node_chunk_size)):
j = min(i + node_chunk_size, dataset.num_papers)
x[i:j] = paper_feat[i:j]
edge_index = dataset.edge_index('author', 'writes', 'paper')
row, col = torch.from_numpy(edge_index)
adj_t = SparseTensor(
row=row, col=col,
sparse_sizes=(dataset.num_authors, dataset.num_papers),
is_sorted=True)
# Processing 64-dim subfeatures at a time for memory efficiency.
print('Generating author features...')
for i in tqdm(range(0, self.num_features, dim_chunk_size)):
j = min(i + dim_chunk_size, self.num_features)
inputs = get_col_slice(paper_feat, start_row_idx=0,
end_row_idx=dataset.num_papers,
start_col_idx=i, end_col_idx=j)
inputs = torch.from_numpy(inputs)
outputs = adj_t.matmul(inputs, reduce='mean').numpy()
del inputs
save_col_slice(
x_src=outputs, x_dst=x, start_row_idx=dataset.num_papers,
end_row_idx=dataset.num_papers + dataset.num_authors,
start_col_idx=i, end_col_idx=j)
del outputs
edge_index = dataset.edge_index('author', 'institution')
row, col = torch.from_numpy(edge_index)
adj_t = SparseTensor(
row=col, col=row,
sparse_sizes=(dataset.num_institutions, dataset.num_authors),
is_sorted=False)
print('Generating institution features...')
# Processing 64-dim subfeatures at a time for memory efficiency.
for i in tqdm(range(0, self.num_features, dim_chunk_size)):
j = min(i + dim_chunk_size, self.num_features)
inputs = get_col_slice(
x, start_row_idx=dataset.num_papers,
end_row_idx=dataset.num_papers + dataset.num_authors,
start_col_idx=i, end_col_idx=j)
inputs = torch.from_numpy(inputs)
outputs = adj_t.matmul(inputs, reduce='mean').numpy()
del inputs
save_col_slice(
x_src=outputs, x_dst=x,
start_row_idx=dataset.num_papers + dataset.num_authors,
end_row_idx=N, start_col_idx=i, end_col_idx=j)
del outputs
x.flush()
del x
print(f'Done! [{time.perf_counter() - t:.2f}s]')
with open(done_flag_path, 'w') as f:
f.write('done')
def setup(self, stage: Optional[str] = None):
t = time.perf_counter()
print('Reading dataset...', end=' ', flush=True)
dataset = MAG240MDataset(self.data_dir)
self.train_idx = torch.from_numpy(dataset.get_idx_split('train'))
self.train_idx = self.train_idx
self.train_idx.share_memory_()
self.val_idx = torch.from_numpy(dataset.get_idx_split('valid'))
self.val_idx.share_memory_()
self.test_idx = torch.from_numpy(dataset.get_idx_split('test-dev'))
self.test_idx.share_memory_()
N = dataset.num_papers + dataset.num_authors + dataset.num_institutions
x = np.memmap(f'{dataset.dir}/full_feat.npy', dtype=np.float16,
mode='r', shape=(N, self.num_features))
if self.in_memory:
self.x = np.empty((N, self.num_features), dtype=np.float16)
self.x[:] = x
self.x = torch.from_numpy(self.x).share_memory_()
else:
self.x = x
self.y = torch.from_numpy(dataset.all_paper_label)
path = f'{dataset.dir}/full_adj_t.pt'
self.adj_t = torch.load(path)
print(f'Done! [{time.perf_counter() - t:.2f}s]')
def train_dataloader(self):
return NeighborSampler(self.adj_t, node_idx=self.train_idx,
sizes=self.sizes, return_e_id=False,
transform=self.convert_batch,
batch_size=self.batch_size, shuffle=True,
num_workers=4)
def val_dataloader(self):
return NeighborSampler(self.adj_t, node_idx=self.val_idx,
sizes=self.sizes, return_e_id=False,
transform=self.convert_batch,
batch_size=self.batch_size, num_workers=2)
def test_dataloader(self): # Test best validation model once again.
return NeighborSampler(self.adj_t, node_idx=self.val_idx,
sizes=self.sizes, return_e_id=False,
transform=self.convert_batch,
batch_size=self.batch_size, num_workers=2)
def hidden_test_dataloader(self):
return NeighborSampler(self.adj_t, node_idx=self.test_idx,
sizes=self.sizes, return_e_id=False,
transform=self.convert_batch,
batch_size=self.batch_size, num_workers=3)
def convert_batch(self, batch_size, n_id, adjs):
if self.in_memory:
x = self.x[n_id].to(torch.float)
else:
x = torch.from_numpy(self.x[n_id.numpy()]).to(torch.float)
y = self.y[n_id[:batch_size]].to(torch.long)
return Batch(x=x, y=y, adjs_t=[adj_t for adj_t, _, _ in adjs])
class RGNN(LightningModule):
def __init__(self, model: str, in_channels: int, out_channels: int,
hidden_channels: int, num_relations: int, num_layers: int,
heads: int = 4, dropout: float = 0.5):
super().__init__()
self.save_hyperparameters()
self.model = model.lower()
self.num_relations = num_relations
self.dropout = dropout
self.convs = ModuleList()
self.norms = ModuleList()
self.skips = ModuleList()
if self.model == 'rgat':
self.convs.append(
ModuleList([
GATConv(in_channels, hidden_channels // heads, heads,
add_self_loops=False) for _ in range(num_relations)
]))
for _ in range(num_layers - 1):
self.convs.append(
ModuleList([
GATConv(hidden_channels, hidden_channels // heads,
heads, add_self_loops=False)
for _ in range(num_relations)
]))
elif self.model == 'rgraphsage':
self.convs.append(
ModuleList([
SAGEConv(in_channels, hidden_channels, root_weight=False)
for _ in range(num_relations)
]))
for _ in range(num_layers - 1):
self.convs.append(
ModuleList([
SAGEConv(hidden_channels, hidden_channels,
root_weight=False)
for _ in range(num_relations)
]))
for _ in range(num_layers):
self.norms.append(BatchNorm1d(hidden_channels))
self.skips.append(Linear(in_channels, hidden_channels))
for _ in range(num_layers - 1):
self.skips.append(Linear(hidden_channels, hidden_channels))
self.mlp = Sequential(
Linear(hidden_channels, hidden_channels),
BatchNorm1d(hidden_channels),
ReLU(inplace=True),
Dropout(p=self.dropout),
Linear(hidden_channels, out_channels),
)
self.train_acc = Accuracy()
self.val_acc = Accuracy()
self.test_acc = Accuracy()
def forward(self, x: Tensor, adjs_t: List[SparseTensor]) -> Tensor:
for i, adj_t in enumerate(adjs_t):
x_target = x[:adj_t.size(0)]
out = self.skips[i](x_target)
for j in range(self.num_relations):
edge_type = adj_t.storage.value() == j
subadj_t = adj_t.masked_select_nnz(edge_type, layout='coo')
subadj_t = subadj_t.set_value(None, layout=None)
if subadj_t.nnz() > 0:
out += self.convs[i][j]((x, x_target), subadj_t)
x = self.norms[i](out)
x = F.elu(x) if self.model == 'rgat' else F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
return self.mlp(x)
def training_step(self, batch, batch_idx: int):
y_hat = self(batch.x, batch.adjs_t)
train_loss = F.cross_entropy(y_hat, batch.y)
self.train_acc(y_hat.softmax(dim=-1), batch.y)
self.log('train_acc', self.train_acc, prog_bar=True, on_step=False,
on_epoch=True)
return train_loss
def validation_step(self, batch, batch_idx: int):
y_hat = self(batch.x, batch.adjs_t)
self.val_acc(y_hat.softmax(dim=-1), batch.y)
self.log('val_acc', self.val_acc, on_step=False, on_epoch=True,
prog_bar=True, sync_dist=True)
def test_step(self, batch, batch_idx: int):
y_hat = self(batch.x, batch.adjs_t)
self.test_acc(y_hat.softmax(dim=-1), batch.y)
self.log('test_acc', self.test_acc, on_step=False, on_epoch=True,
prog_bar=True, sync_dist=True)
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0.001)
scheduler = StepLR(optimizer, step_size=25, gamma=0.25)
return [optimizer], [scheduler]
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--hidden_channels', type=int, default=1024)
parser.add_argument('--batch_size', type=int, default=1024)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--model', type=str, default='rgat',
choices=['rgat', 'rgraphsage'])
parser.add_argument('--sizes', type=str, default='25-15')
parser.add_argument('--in-memory', action='store_true')
parser.add_argument('--device', type=str, default='0')
parser.add_argument('--evaluate', action='store_true')
args = parser.parse_args()
args.sizes = [int(i) for i in args.sizes.split('-')]
print(args)
seed_everything(42)
datamodule = MAG240M(ROOT, args.batch_size, args.sizes, args.in_memory)
if not args.evaluate:
model = RGNN(args.model, datamodule.num_features,
datamodule.num_classes, args.hidden_channels,
datamodule.num_relations, num_layers=len(args.sizes),
dropout=args.dropout)
print(f'#Params {sum([p.numel() for p in model.parameters()])}')
checkpoint_callback = ModelCheckpoint(monitor='val_acc', mode='max',
save_top_k=1)
if WITHOUT_LIGHTNING_V2:
trainer = Trainer(gpus=args.device, max_epochs=args.epochs,
callbacks=[checkpoint_callback],
default_root_dir=f'logs/{args.model}')
else:
trainer = Trainer(devices=len(args.device.split(',')), max_epochs=args.epochs,
callbacks=[checkpoint_callback],
default_root_dir=f'logs/{args.model}')
trainer.fit(model, datamodule=datamodule)
if args.evaluate:
dirs = glob.glob(f'logs/{args.model}/lightning_logs/*')
version = max([int(x.split(os.sep)[-1].split('_')[-1]) for x in dirs])
logdir = f'logs/{args.model}/lightning_logs/version_{version}'
print(f'Evaluating saved model in {logdir}...')
ckpt = glob.glob(f'{logdir}/checkpoints/*')[0]
if WITHOUT_LIGHTNING_V2:
trainer = Trainer(gpus=args.device, resume_from_checkpoint=ckpt)
else:
trainer = Trainer(devices=len(args.device.split(',')), resume_from_checkpoint=ckpt)
model = RGNN.load_from_checkpoint(
checkpoint_path=ckpt, hparams_file=f'{logdir}/hparams.yaml')
datamodule.batch_size = 16
datamodule.sizes = [160] * len(args.sizes) # (Almost) no sampling...
trainer.test(model=model, datamodule=datamodule)
evaluator = MAG240MEvaluator()
loader = datamodule.hidden_test_dataloader()
model.eval()
device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu'
model.to(device)
y_preds = []
for batch in tqdm(loader):
batch = batch.to(device)
with torch.no_grad():
out = model(batch.x, batch.adjs_t).argmax(dim=-1).cpu()
y_preds.append(out)
res = {'y_pred': torch.cat(y_preds, dim=0)}
evaluator.save_test_submission(res, f'results/{args.model}',
mode='test-dev')