-
Notifications
You must be signed in to change notification settings - Fork 68
/
AdjacencyMap.hs
925 lines (831 loc) · 34.2 KB
/
AdjacencyMap.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
-----------------------------------------------------------------------------
-- |
-- Module : Algebra.Graph.AdjacencyMap
-- Copyright : (c) Andrey Mokhov 2016-2024
-- License : MIT (see the file LICENSE)
-- Maintainer : andrey.mokhov@gmail.com
-- Stability : experimental
--
-- __Alga__ is a library for algebraic construction and manipulation of graphs
-- in Haskell. See <https://github.com/snowleopard/alga-paper this paper> for the
-- motivation behind the library, the underlying theory, and implementation details.
--
-- This module defines the 'AdjacencyMap' data type and associated functions.
-- See "Algebra.Graph.AdjacencyMap.Algorithm" for basic graph algorithms.
-- 'AdjacencyMap' is an instance of the 'C.Graph' type class, which can be used
-- for polymorphic graph construction and manipulation.
-- "Algebra.Graph.AdjacencyIntMap" defines adjacency maps specialised to graphs
-- with @Int@ vertices.
-----------------------------------------------------------------------------
module Algebra.Graph.AdjacencyMap (
-- * Data structure
AdjacencyMap, adjacencyMap,
-- * Basic graph construction primitives
empty, vertex, edge, overlay, connect, vertices, edges, overlays, connects,
-- * Relations on graphs
isSubgraphOf,
-- * Graph properties
isEmpty, hasVertex, hasEdge, vertexCount, edgeCount, vertexList, edgeList,
adjacencyList, vertexSet, edgeSet, preSet, postSet,
-- * Standard families of graphs
path, circuit, clique, biclique, star, stars, fromAdjacencySets, tree,
forest,
-- * Graph transformation
removeVertex, removeEdge, replaceVertex, mergeVertices, transpose, gmap,
induce, induceJust,
-- * Graph composition
compose, box,
-- * Relational operations
closure, reflexiveClosure, symmetricClosure, transitiveClosure,
-- * Miscellaneous
consistent
) where
import Control.DeepSeq
import Data.List ((\\))
import Data.Map.Strict (Map)
import Data.Monoid
import Data.Set (Set)
import Data.String
import Data.Tree
import GHC.Generics
import qualified Data.Map.Strict as Map
import qualified Data.Maybe as Maybe
import qualified Data.Set as Set
{-| The 'AdjacencyMap' data type represents a graph by a map of vertices to
their adjacency sets. We define a 'Num' instance as a convenient notation for
working with graphs:
@
0 == 'vertex' 0
1 + 2 == 'overlay' ('vertex' 1) ('vertex' 2)
1 * 2 == 'connect' ('vertex' 1) ('vertex' 2)
1 + 2 * 3 == 'overlay' ('vertex' 1) ('connect' ('vertex' 2) ('vertex' 3))
1 * (2 + 3) == 'connect' ('vertex' 1) ('overlay' ('vertex' 2) ('vertex' 3))
@
__Note:__ the 'Num' instance does not satisfy several "customary laws" of 'Num',
which dictate that 'fromInteger' @0@ and 'fromInteger' @1@ should act as
additive and multiplicative identities, and 'negate' as additive inverse.
Nevertheless, overloading 'fromInteger', '+' and '*' is very convenient when
working with algebraic graphs; we hope that in future Haskell's Prelude will
provide a more fine-grained class hierarchy for algebraic structures, which we
would be able to utilise without violating any laws.
The 'Show' instance is defined using basic graph construction primitives:
@show (empty :: AdjacencyMap Int) == "empty"
show (1 :: AdjacencyMap Int) == "vertex 1"
show (1 + 2 :: AdjacencyMap Int) == "vertices [1,2]"
show (1 * 2 :: AdjacencyMap Int) == "edge 1 2"
show (1 * 2 * 3 :: AdjacencyMap Int) == "edges [(1,2),(1,3),(2,3)]"
show (1 * 2 + 3 :: AdjacencyMap Int) == "overlay (vertex 3) (edge 1 2)"@
The 'Eq' instance satisfies all axioms of algebraic graphs:
* 'overlay' is commutative and associative:
> x + y == y + x
> x + (y + z) == (x + y) + z
* 'connect' is associative and has 'empty' as the identity:
> x * empty == x
> empty * x == x
> x * (y * z) == (x * y) * z
* 'connect' distributes over 'overlay':
> x * (y + z) == x * y + x * z
> (x + y) * z == x * z + y * z
* 'connect' can be decomposed:
> x * y * z == x * y + x * z + y * z
The following useful theorems can be proved from the above set of axioms.
* 'overlay' has 'empty' as the identity and is idempotent:
> x + empty == x
> empty + x == x
> x + x == x
* Absorption and saturation of 'connect':
> x * y + x + y == x * y
> x * x * x == x * x
When specifying the time and memory complexity of graph algorithms, /n/ and /m/
will denote the number of vertices and edges in the graph, respectively.
The total order on graphs is defined using /size-lexicographic/ comparison:
* Compare the number of vertices. In case of a tie, continue.
* Compare the sets of vertices. In case of a tie, continue.
* Compare the number of edges. In case of a tie, continue.
* Compare the sets of edges.
Here are a few examples:
@'vertex' 1 < 'vertex' 2
'vertex' 3 < 'edge' 1 2
'vertex' 1 < 'edge' 1 1
'edge' 1 1 < 'edge' 1 2
'edge' 1 2 < 'edge' 1 1 + 'edge' 2 2
'edge' 1 2 < 'edge' 1 3@
Note that the resulting order refines the 'isSubgraphOf' relation and is
compatible with 'overlay' and 'connect' operations:
@'isSubgraphOf' x y ==> x <= y@
@'empty' <= x
x <= x + y
x + y <= x * y@
-}
newtype AdjacencyMap a = AM {
-- | The /adjacency map/ of a graph: each vertex is associated with a set of
-- its direct successors. Complexity: /O(1)/ time and memory.
--
-- @
-- adjacencyMap 'empty' == Map.'Map.empty'
-- adjacencyMap ('vertex' x) == Map.'Map.singleton' x Set.'Set.empty'
-- adjacencyMap ('edge' 1 1) == Map.'Map.singleton' 1 (Set.'Set.singleton' 1)
-- adjacencyMap ('edge' 1 2) == Map.'Map.fromList' [(1,Set.'Set.singleton' 2), (2,Set.'Set.empty')]
-- @
adjacencyMap :: Map a (Set a) } deriving (Eq, Generic)
instance Ord a => Ord (AdjacencyMap a) where
compare x y = mconcat
[ compare (vertexCount x) (vertexCount y)
, compare (vertexSet x) (vertexSet y)
, compare (edgeCount x) (edgeCount y)
, compare (edgeSet x) (edgeSet y) ]
instance (Ord a, Show a) => Show (AdjacencyMap a) where
showsPrec p am@(AM m)
| null vs = showString "empty"
| null es = showParen (p > 10) $ vshow vs
| vs == used = showParen (p > 10) $ eshow es
| otherwise = showParen (p > 10) $ showString "overlay ("
. vshow (vs \\ used) . showString ") ("
. eshow es . showString ")"
where
vs = vertexList am
es = edgeList am
vshow [x] = showString "vertex " . showsPrec 11 x
vshow xs = showString "vertices " . showsPrec 11 xs
eshow [(x, y)] = showString "edge " . showsPrec 11 x .
showString " " . showsPrec 11 y
eshow xs = showString "edges " . showsPrec 11 xs
used = Set.toAscList (referredToVertexSet m)
-- | __Note:__ this does not satisfy the usual ring laws; see 'AdjacencyMap'
-- for more details.
instance (Ord a, Num a) => Num (AdjacencyMap a) where
fromInteger = vertex . fromInteger
(+) = overlay
(*) = connect
signum = const empty
abs = id
negate = id
instance IsString a => IsString (AdjacencyMap a) where
fromString = vertex . fromString
instance NFData a => NFData (AdjacencyMap a) where
rnf (AM a) = rnf a
-- | Defined via 'overlay'.
instance Ord a => Semigroup (AdjacencyMap a) where
(<>) = overlay
-- | Defined via 'overlay' and 'empty'.
instance Ord a => Monoid (AdjacencyMap a) where
mempty = empty
-- | Construct the /empty graph/.
--
-- @
-- 'isEmpty' empty == True
-- 'hasVertex' x empty == False
-- 'vertexCount' empty == 0
-- 'edgeCount' empty == 0
-- @
empty :: AdjacencyMap a
empty = AM Map.empty
{-# NOINLINE [1] empty #-}
-- | Construct the graph comprising /a single isolated vertex/.
--
-- @
-- 'isEmpty' (vertex x) == False
-- 'hasVertex' x (vertex y) == (x == y)
-- 'vertexCount' (vertex x) == 1
-- 'edgeCount' (vertex x) == 0
-- @
vertex :: a -> AdjacencyMap a
vertex x = AM $ Map.singleton x Set.empty
{-# NOINLINE [1] vertex #-}
-- | Construct the graph comprising /a single edge/.
--
-- @
-- edge x y == 'connect' ('vertex' x) ('vertex' y)
-- 'hasEdge' x y (edge x y) == True
-- 'edgeCount' (edge x y) == 1
-- 'vertexCount' (edge 1 1) == 1
-- 'vertexCount' (edge 1 2) == 2
-- @
edge :: Ord a => a -> a -> AdjacencyMap a
edge x y | x == y = AM $ Map.singleton x (Set.singleton y)
| otherwise = AM $ Map.fromList [(x, Set.singleton y), (y, Set.empty)]
-- | /Overlay/ two graphs. This is a commutative, associative and idempotent
-- operation with the identity 'empty'.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- 'isEmpty' (overlay x y) == 'isEmpty' x && 'isEmpty' y
-- 'hasVertex' z (overlay x y) == 'hasVertex' z x || 'hasVertex' z y
-- 'vertexCount' (overlay x y) >= 'vertexCount' x
-- 'vertexCount' (overlay x y) <= 'vertexCount' x + 'vertexCount' y
-- 'edgeCount' (overlay x y) >= 'edgeCount' x
-- 'edgeCount' (overlay x y) <= 'edgeCount' x + 'edgeCount' y
-- 'vertexCount' (overlay 1 2) == 2
-- 'edgeCount' (overlay 1 2) == 0
-- @
overlay :: Ord a => AdjacencyMap a -> AdjacencyMap a -> AdjacencyMap a
overlay (AM x) (AM y) = AM $ Map.unionWith Set.union x y
{-# NOINLINE [1] overlay #-}
-- | /Connect/ two graphs. This is an associative operation with the identity
-- 'empty', which distributes over 'overlay' and obeys the decomposition axiom.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory. Note that the
-- number of edges in the resulting graph is quadratic with respect to the number
-- of vertices of the arguments: /m = O(m1 + m2 + n1 * n2)/.
--
-- @
-- 'isEmpty' (connect x y) == 'isEmpty' x && 'isEmpty' y
-- 'hasVertex' z (connect x y) == 'hasVertex' z x || 'hasVertex' z y
-- 'vertexCount' (connect x y) >= 'vertexCount' x
-- 'vertexCount' (connect x y) <= 'vertexCount' x + 'vertexCount' y
-- 'edgeCount' (connect x y) >= 'edgeCount' x
-- 'edgeCount' (connect x y) >= 'edgeCount' y
-- 'edgeCount' (connect x y) >= 'vertexCount' x * 'vertexCount' y
-- 'edgeCount' (connect x y) <= 'vertexCount' x * 'vertexCount' y + 'edgeCount' x + 'edgeCount' y
-- 'vertexCount' (connect 1 2) == 2
-- 'edgeCount' (connect 1 2) == 1
-- @
connect :: Ord a => AdjacencyMap a -> AdjacencyMap a -> AdjacencyMap a
connect (AM x) (AM y) = AM $ Map.unionsWith Set.union
[ x, y, Map.fromSet (const $ Map.keysSet y) (Map.keysSet x) ]
{-# NOINLINE [1] connect #-}
-- | Construct the graph comprising a given list of isolated vertices.
-- Complexity: /O(L * log(L))/ time and /O(L)/ memory, where /L/ is the length
-- of the given list.
--
-- @
-- vertices [] == 'empty'
-- vertices [x] == 'vertex' x
-- vertices == 'overlays' . map 'vertex'
-- 'hasVertex' x . vertices == 'elem' x
-- 'vertexCount' . vertices == 'length' . 'Data.List.nub'
-- 'vertexSet' . vertices == Set.'Set.fromList'
-- @
vertices :: Ord a => [a] -> AdjacencyMap a
vertices = AM . Map.fromList . map (, Set.empty)
{-# NOINLINE [1] vertices #-}
-- | Construct the graph from a list of edges.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- edges [] == 'empty'
-- edges [(x,y)] == 'edge' x y
-- edges == 'overlays' . 'map' ('uncurry' 'edge')
-- 'edgeCount' . edges == 'length' . 'Data.List.nub'
-- 'edgeList' . edges == 'Data.List.nub' . 'Data.List.sort'
-- @
edges :: Ord a => [(a, a)] -> AdjacencyMap a
edges = fromAdjacencySets . map (fmap Set.singleton)
-- | Overlay a given list of graphs.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- overlays [] == 'empty'
-- overlays [x] == x
-- overlays [x,y] == 'overlay' x y
-- overlays == 'foldr' 'overlay' 'empty'
-- 'isEmpty' . overlays == 'all' 'isEmpty'
-- @
overlays :: Ord a => [AdjacencyMap a] -> AdjacencyMap a
overlays = AM . Map.unionsWith Set.union . map adjacencyMap
{-# NOINLINE overlays #-}
-- | Connect a given list of graphs.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- connects [] == 'empty'
-- connects [x] == x
-- connects [x,y] == 'connect' x y
-- connects == 'foldr' 'connect' 'empty'
-- 'isEmpty' . connects == 'all' 'isEmpty'
-- @
connects :: Ord a => [AdjacencyMap a] -> AdjacencyMap a
connects = foldr connect empty
{-# NOINLINE connects #-}
-- | The 'isSubgraphOf' function takes two graphs and returns 'True' if the
-- first graph is a /subgraph/ of the second.
-- Complexity: /O((n + m) * log(n))/ time.
--
-- @
-- isSubgraphOf 'empty' x == True
-- isSubgraphOf ('vertex' x) 'empty' == False
-- isSubgraphOf x ('overlay' x y) == True
-- isSubgraphOf ('overlay' x y) ('connect' x y) == True
-- isSubgraphOf ('path' xs) ('circuit' xs) == True
-- isSubgraphOf x y ==> x <= y
-- @
isSubgraphOf :: Ord a => AdjacencyMap a -> AdjacencyMap a -> Bool
isSubgraphOf (AM x) (AM y) = Map.isSubmapOfBy Set.isSubsetOf x y
-- | Check if a graph is empty.
-- Complexity: /O(1)/ time.
--
-- @
-- isEmpty 'empty' == True
-- isEmpty ('overlay' 'empty' 'empty') == True
-- isEmpty ('vertex' x) == False
-- isEmpty ('removeVertex' x $ 'vertex' x) == True
-- isEmpty ('removeEdge' x y $ 'edge' x y) == False
-- @
isEmpty :: AdjacencyMap a -> Bool
isEmpty = Map.null . adjacencyMap
-- | Check if a graph contains a given vertex.
-- Complexity: /O(log(n))/ time.
--
-- @
-- hasVertex x 'empty' == False
-- hasVertex x ('vertex' y) == (x == y)
-- hasVertex x . 'removeVertex' x == 'const' False
-- @
hasVertex :: Ord a => a -> AdjacencyMap a -> Bool
hasVertex x = Map.member x . adjacencyMap
-- | Check if a graph contains a given edge.
-- Complexity: /O(log(n))/ time.
--
-- @
-- hasEdge x y 'empty' == False
-- hasEdge x y ('vertex' z) == False
-- hasEdge x y ('edge' x y) == True
-- hasEdge x y . 'removeEdge' x y == 'const' False
-- hasEdge x y == 'elem' (x,y) . 'edgeList'
-- @
hasEdge :: Ord a => a -> a -> AdjacencyMap a -> Bool
hasEdge u v (AM m) = case Map.lookup u m of
Nothing -> False
Just vs -> Set.member v vs
-- | The number of vertices in a graph.
-- Complexity: /O(1)/ time.
--
-- @
-- vertexCount 'empty' == 0
-- vertexCount ('vertex' x) == 1
-- vertexCount == 'length' . 'vertexList'
-- vertexCount x \< vertexCount y ==> x \< y
-- @
vertexCount :: AdjacencyMap a -> Int
vertexCount = Map.size . adjacencyMap
-- | The number of edges in a graph.
-- Complexity: /O(n)/ time.
--
-- @
-- edgeCount 'empty' == 0
-- edgeCount ('vertex' x) == 0
-- edgeCount ('edge' x y) == 1
-- edgeCount == 'length' . 'edgeList'
-- @
edgeCount :: AdjacencyMap a -> Int
edgeCount = getSum . foldMap (Sum . Set.size) . adjacencyMap
-- | The sorted list of vertices of a given graph.
-- Complexity: /O(n)/ time and memory.
--
-- @
-- vertexList 'empty' == []
-- vertexList ('vertex' x) == [x]
-- vertexList . 'vertices' == 'Data.List.nub' . 'Data.List.sort'
-- @
vertexList :: AdjacencyMap a -> [a]
vertexList = Map.keys . adjacencyMap
-- | The sorted list of edges of a graph.
-- Complexity: /O(n + m)/ time and /O(m)/ memory.
--
-- @
-- edgeList 'empty' == []
-- edgeList ('vertex' x) == []
-- edgeList ('edge' x y) == [(x,y)]
-- edgeList ('star' 2 [3,1]) == [(2,1), (2,3)]
-- edgeList . 'edges' == 'Data.List.nub' . 'Data.List.sort'
-- edgeList . 'transpose' == 'Data.List.sort' . 'map' 'Data.Tuple.swap' . edgeList
-- @
edgeList :: AdjacencyMap a -> [(a, a)]
edgeList (AM m) = [ (x, y) | (x, ys) <- Map.toAscList m, y <- Set.toAscList ys ]
{-# INLINE edgeList #-}
-- | The set of vertices of a given graph.
-- Complexity: /O(n)/ time and memory.
--
-- @
-- vertexSet 'empty' == Set.'Set.empty'
-- vertexSet . 'vertex' == Set.'Set.singleton'
-- vertexSet . 'vertices' == Set.'Set.fromList'
-- @
vertexSet :: AdjacencyMap a -> Set a
vertexSet = Map.keysSet . adjacencyMap
-- | The set of edges of a given graph.
-- Complexity: /O((n + m) * log(m))/ time and /O(m)/ memory.
--
-- @
-- edgeSet 'empty' == Set.'Set.empty'
-- edgeSet ('vertex' x) == Set.'Set.empty'
-- edgeSet ('edge' x y) == Set.'Set.singleton' (x,y)
-- edgeSet . 'edges' == Set.'Set.fromList'
-- @
edgeSet :: Eq a => AdjacencyMap a -> Set (a, a)
edgeSet = Set.fromAscList . edgeList
-- | The sorted /adjacency list/ of a graph.
-- Complexity: /O(n + m)/ time and memory.
--
-- @
-- adjacencyList 'empty' == []
-- adjacencyList ('vertex' x) == [(x, [])]
-- adjacencyList ('edge' 1 2) == [(1, [2]), (2, [])]
-- adjacencyList ('star' 2 [3,1]) == [(1, []), (2, [1,3]), (3, [])]
-- 'stars' . adjacencyList == id
-- @
adjacencyList :: AdjacencyMap a -> [(a, [a])]
adjacencyList = map (fmap Set.toAscList) . Map.toAscList . adjacencyMap
-- | The /preset/ of an element @x@ is the set of its /direct predecessors/.
-- Complexity: /O(n * log(n))/ time and /O(n)/ memory.
--
-- @
-- preSet x 'empty' == Set.'Set.empty'
-- preSet x ('vertex' x) == Set.'Set.empty'
-- preSet 1 ('edge' 1 2) == Set.'Set.empty'
-- preSet y ('edge' x y) == Set.'Set.fromList' [x]
-- @
preSet :: Ord a => a -> AdjacencyMap a -> Set a
preSet x = Set.fromAscList . map fst . filter p . Map.toAscList . adjacencyMap
where
p (_, set) = x `Set.member` set
-- | The /postset/ of a vertex is the set of its /direct successors/.
-- Complexity: /O(log(n))/ time and /O(1)/ memory.
--
-- @
-- postSet x 'empty' == Set.'Set.empty'
-- postSet x ('vertex' x) == Set.'Set.empty'
-- postSet x ('edge' x y) == Set.'Set.fromList' [y]
-- postSet 2 ('edge' 1 2) == Set.'Set.empty'
-- @
postSet :: Ord a => a -> AdjacencyMap a -> Set a
postSet x = Map.findWithDefault Set.empty x . adjacencyMap
-- | The /path/ on a list of vertices.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- path [] == 'empty'
-- path [x] == 'vertex' x
-- path [x,y] == 'edge' x y
-- path . 'reverse' == 'transpose' . path
-- @
path :: Ord a => [a] -> AdjacencyMap a
path xs = case xs of [] -> empty
[x] -> vertex x
(_:ys) -> edges (zip xs ys)
-- | The /circuit/ on a list of vertices.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- circuit [] == 'empty'
-- circuit [x] == 'edge' x x
-- circuit [x,y] == 'edges' [(x,y), (y,x)]
-- circuit . 'reverse' == 'transpose' . circuit
-- @
circuit :: Ord a => [a] -> AdjacencyMap a
circuit [] = empty
circuit (x:xs) = path $ [x] ++ xs ++ [x]
-- | The /clique/ on a list of vertices.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- clique [] == 'empty'
-- clique [x] == 'vertex' x
-- clique [x,y] == 'edge' x y
-- clique [x,y,z] == 'edges' [(x,y), (x,z), (y,z)]
-- clique (xs '++' ys) == 'connect' (clique xs) (clique ys)
-- clique . 'reverse' == 'transpose' . clique
-- @
clique :: Ord a => [a] -> AdjacencyMap a
clique = fromAdjacencySets . fst . go
where
go [] = ([], Set.empty)
go (x:xs) = let (res, set) = go xs in ((x, set) : res, Set.insert x set)
{-# NOINLINE [1] clique #-}
-- | The /biclique/ on two lists of vertices.
-- Complexity: /O(n * log(n) + m)/ time and /O(n + m)/ memory.
--
-- @
-- biclique [] [] == 'empty'
-- biclique [x] [] == 'vertex' x
-- biclique [] [y] == 'vertex' y
-- biclique [x1,x2] [y1,y2] == 'edges' [(x1,y1), (x1,y2), (x2,y1), (x2,y2)]
-- biclique xs ys == 'connect' ('vertices' xs) ('vertices' ys)
-- @
biclique :: Ord a => [a] -> [a] -> AdjacencyMap a
biclique xs ys = AM $ Map.fromSet adjacent (x `Set.union` y)
where
x = Set.fromList xs
y = Set.fromList ys
adjacent v = if v `Set.member` x then y else Set.empty
-- TODO: Optimise.
-- | The /star/ formed by a centre vertex connected to a list of leaves.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- star x [] == 'vertex' x
-- star x [y] == 'edge' x y
-- star x [y,z] == 'edges' [(x,y), (x,z)]
-- star x ys == 'connect' ('vertex' x) ('vertices' ys)
-- @
star :: Ord a => a -> [a] -> AdjacencyMap a
star x [] = vertex x
star x ys = connect (vertex x) (vertices ys)
{-# INLINE star #-}
-- | The /stars/ formed by overlaying a list of 'star's. An inverse of
-- 'adjacencyList'.
-- Complexity: /O(L * log(n))/ time, memory and size, where /L/ is the total
-- size of the input.
--
-- @
-- stars [] == 'empty'
-- stars [(x, [])] == 'vertex' x
-- stars [(x, [y])] == 'edge' x y
-- stars [(x, ys)] == 'star' x ys
-- stars == 'overlays' . 'map' ('uncurry' 'star')
-- stars . 'adjacencyList' == id
-- 'overlay' (stars xs) (stars ys) == stars (xs '++' ys)
-- @
stars :: Ord a => [(a, [a])] -> AdjacencyMap a
stars = fromAdjacencySets . map (fmap Set.fromList)
-- | Construct a graph from a list of adjacency sets; a variation of 'stars'.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- fromAdjacencySets [] == 'empty'
-- fromAdjacencySets [(x, Set.'Set.empty')] == 'vertex' x
-- fromAdjacencySets [(x, Set.'Set.singleton' y)] == 'edge' x y
-- fromAdjacencySets . 'map' ('fmap' Set.'Set.fromList') == 'stars'
-- 'overlay' (fromAdjacencySets xs) (fromAdjacencySets ys) == fromAdjacencySets (xs '++' ys)
-- @
fromAdjacencySets :: Ord a => [(a, Set a)] -> AdjacencyMap a
fromAdjacencySets ss = AM $ Map.unionWith Set.union vs es
where
vs = Map.fromSet (const Set.empty) . Set.unions $ map snd ss
es = Map.fromListWith Set.union ss
-- | The /tree graph/ constructed from a given 'Tree' data structure.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- tree (Node x []) == 'vertex' x
-- tree (Node x [Node y [Node z []]]) == 'path' [x,y,z]
-- tree (Node x [Node y [], Node z []]) == 'star' x [y,z]
-- tree (Node 1 [Node 2 [], Node 3 [Node 4 [], Node 5 []]]) == 'edges' [(1,2), (1,3), (3,4), (3,5)]
-- @
tree :: Ord a => Tree a -> AdjacencyMap a
tree (Node x []) = vertex x
tree (Node x f ) = star x (map rootLabel f)
`overlay` forest (filter (not . null . subForest) f)
-- | The /forest graph/ constructed from a given 'Forest' data structure.
-- Complexity: /O((n + m) * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- forest [] == 'empty'
-- forest [x] == 'tree' x
-- forest [Node 1 [Node 2 [], Node 3 []], Node 4 [Node 5 []]] == 'edges' [(1,2), (1,3), (4,5)]
-- forest == 'overlays' . 'map' 'tree'
-- @
forest :: Ord a => Forest a -> AdjacencyMap a
forest = overlays . map tree
-- | Remove a vertex from a given graph.
-- Complexity: /O(n*log(n))/ time.
--
-- @
-- removeVertex x ('vertex' x) == 'empty'
-- removeVertex 1 ('vertex' 2) == 'vertex' 2
-- removeVertex x ('edge' x x) == 'empty'
-- removeVertex 1 ('edge' 1 2) == 'vertex' 2
-- removeVertex x . removeVertex x == removeVertex x
-- @
removeVertex :: Ord a => a -> AdjacencyMap a -> AdjacencyMap a
removeVertex x = AM . Map.map (Set.delete x) . Map.delete x . adjacencyMap
-- | Remove an edge from a given graph.
-- Complexity: /O(log(n))/ time.
--
-- @
-- removeEdge x y ('edge' x y) == 'vertices' [x,y]
-- removeEdge x y . removeEdge x y == removeEdge x y
-- removeEdge x y . 'removeVertex' x == 'removeVertex' x
-- removeEdge 1 1 (1 * 1 * 2 * 2) == 1 * 2 * 2
-- removeEdge 1 2 (1 * 1 * 2 * 2) == 1 * 1 + 2 * 2
-- @
removeEdge :: Ord a => a -> a -> AdjacencyMap a -> AdjacencyMap a
removeEdge x y = AM . Map.adjust (Set.delete y) x . adjacencyMap
-- | The function @'replaceVertex' x y@ replaces vertex @x@ with vertex @y@ in a
-- given 'AdjacencyMap'. If @y@ already exists, @x@ and @y@ will be merged.
-- Complexity: /O((n + m) * log(n))/ time.
--
-- @
-- replaceVertex x x == id
-- replaceVertex x y ('vertex' x) == 'vertex' y
-- replaceVertex x y == 'mergeVertices' (== x) y
-- @
replaceVertex :: Ord a => a -> a -> AdjacencyMap a -> AdjacencyMap a
replaceVertex u v = gmap $ \w -> if w == u then v else w
-- | Merge vertices satisfying a given predicate into a given vertex.
-- Complexity: /O((n + m) * log(n))/ time, assuming that the predicate takes
-- constant time.
--
-- @
-- mergeVertices ('const' False) x == id
-- mergeVertices (== x) y == 'replaceVertex' x y
-- mergeVertices 'even' 1 (0 * 2) == 1 * 1
-- mergeVertices 'odd' 1 (3 + 4 * 5) == 4 * 1
-- @
mergeVertices :: Ord a => (a -> Bool) -> a -> AdjacencyMap a -> AdjacencyMap a
mergeVertices p v = gmap $ \u -> if p u then v else u
-- | Transpose a given graph.
-- Complexity: /O(m * log(n))/ time, /O(n + m)/ memory.
--
-- @
-- transpose 'empty' == 'empty'
-- transpose ('vertex' x) == 'vertex' x
-- transpose ('edge' x y) == 'edge' y x
-- transpose . transpose == id
-- 'edgeList' . transpose == 'Data.List.sort' . 'map' 'Data.Tuple.swap' . 'edgeList'
-- @
transpose :: Ord a => AdjacencyMap a -> AdjacencyMap a
transpose (AM m) = AM $ Map.foldrWithKey combine vs m
where
combine v es = Map.unionWith Set.union (Map.fromSet (const $ Set.singleton v) es)
vs = Map.fromSet (const Set.empty) (Map.keysSet m)
{-# NOINLINE [1] transpose #-}
{-# RULES
"transpose/empty" transpose empty = empty
"transpose/vertex" forall x. transpose (vertex x) = vertex x
"transpose/overlay" forall g1 g2. transpose (overlay g1 g2) = overlay (transpose g1) (transpose g2)
"transpose/connect" forall g1 g2. transpose (connect g1 g2) = connect (transpose g2) (transpose g1)
"transpose/overlays" forall xs. transpose (overlays xs) = overlays (map transpose xs)
"transpose/connects" forall xs. transpose (connects xs) = connects (reverse (map transpose xs))
"transpose/vertices" forall xs. transpose (vertices xs) = vertices xs
"transpose/clique" forall xs. transpose (clique xs) = clique (reverse xs)
#-}
-- | Transform a graph by applying a function to each of its vertices. This is
-- similar to @Functor@'s 'fmap' but can be used with non-fully-parametric
-- 'AdjacencyMap'.
-- Complexity: /O((n + m) * log(n))/ time.
--
-- @
-- gmap f 'empty' == 'empty'
-- gmap f ('vertex' x) == 'vertex' (f x)
-- gmap f ('edge' x y) == 'edge' (f x) (f y)
-- gmap 'id' == 'id'
-- gmap f . gmap g == gmap (f . g)
-- @
gmap :: (Ord a, Ord b) => (a -> b) -> AdjacencyMap a -> AdjacencyMap b
gmap f = AM . Map.map (Set.map f) . Map.mapKeysWith Set.union f . adjacencyMap
-- | Construct the /induced subgraph/ of a given graph by removing the
-- vertices that do not satisfy a given predicate.
-- Complexity: /O(n + m)/ time, assuming that the predicate takes constant time.
--
-- @
-- induce ('const' True ) x == x
-- induce ('const' False) x == 'empty'
-- induce (/= x) == 'removeVertex' x
-- induce p . induce q == induce (\\x -> p x && q x)
-- 'isSubgraphOf' (induce p x) x == True
-- @
induce :: (a -> Bool) -> AdjacencyMap a -> AdjacencyMap a
induce p = AM . Map.map (Set.filter p) . Map.filterWithKey (\k _ -> p k) . adjacencyMap
-- | Construct the /induced subgraph/ of a given graph by removing the vertices
-- that are 'Nothing'.
-- Complexity: /O(n + m)/ time.
--
-- @
-- induceJust ('vertex' 'Nothing') == 'empty'
-- induceJust ('edge' ('Just' x) 'Nothing') == 'vertex' x
-- induceJust . 'gmap' 'Just' == 'id'
-- induceJust . 'gmap' (\\x -> if p x then 'Just' x else 'Nothing') == 'induce' p
-- @
induceJust :: Ord a => AdjacencyMap (Maybe a) -> AdjacencyMap a
induceJust = AM . Map.map catMaybesSet . catMaybesMap . adjacencyMap
where
catMaybesSet = Set.mapMonotonic Maybe.fromJust . Set.delete Nothing
catMaybesMap = Map.mapKeysMonotonic Maybe.fromJust . Map.delete Nothing
-- | Left-to-right /relational composition/ of graphs: vertices @x@ and @z@ are
-- connected in the resulting graph if there is a vertex @y@, such that @x@ is
-- connected to @y@ in the first graph, and @y@ is connected to @z@ in the
-- second graph. There are no isolated vertices in the result. This operation is
-- associative, has 'empty' and single-'vertex' graphs as /annihilating zeroes/,
-- and distributes over 'overlay'.
-- Complexity: /O(n * m * log(n))/ time and /O(n + m)/ memory.
--
-- @
-- compose 'empty' x == 'empty'
-- compose x 'empty' == 'empty'
-- compose ('vertex' x) y == 'empty'
-- compose x ('vertex' y) == 'empty'
-- compose x (compose y z) == compose (compose x y) z
-- compose x ('overlay' y z) == 'overlay' (compose x y) (compose x z)
-- compose ('overlay' x y) z == 'overlay' (compose x z) (compose y z)
-- compose ('edge' x y) ('edge' y z) == 'edge' x z
-- compose ('path' [1..5]) ('path' [1..5]) == 'edges' [(1,3), (2,4), (3,5)]
-- compose ('circuit' [1..5]) ('circuit' [1..5]) == 'circuit' [1,3,5,2,4]
-- @
compose :: Ord a => AdjacencyMap a -> AdjacencyMap a -> AdjacencyMap a
compose x y = fromAdjacencySets
[ (t, ys) | v <- Set.toList vs, let ys = postSet v y, not (Set.null ys)
, t <- Set.toList (postSet v tx) ]
where
tx = transpose x
vs = vertexSet x `Set.union` vertexSet y
-- | Compute the /Cartesian product/ of graphs.
-- Complexity: /O((n + m) * log(n))/ time and O(n + m) memory.
--
-- @
-- box ('path' [0,1]) ('path' "ab") == 'edges' [ ((0,\'a\'), (0,\'b\'))
-- , ((0,\'a\'), (1,\'a\'))
-- , ((0,\'b\'), (1,\'b\'))
-- , ((1,\'a\'), (1,\'b\')) ]
-- @
--
-- Up to isomorphism between the resulting vertex types, this operation is
-- /commutative/, /associative/, /distributes/ over 'overlay', has singleton
-- graphs as /identities/ and 'empty' as the /annihilating zero/. Below @~~@
-- stands for equality up to an isomorphism, e.g. @(x,@ @()) ~~ x@.
--
-- @
-- box x y ~~ box y x
-- box x (box y z) ~~ box (box x y) z
-- box x ('overlay' y z) == 'overlay' (box x y) (box x z)
-- box x ('vertex' ()) ~~ x
-- box x 'empty' ~~ 'empty'
-- 'transpose' (box x y) == box ('transpose' x) ('transpose' y)
-- 'vertexCount' (box x y) == 'vertexCount' x * 'vertexCount' y
-- 'edgeCount' (box x y) <= 'vertexCount' x * 'edgeCount' y + 'edgeCount' x * 'vertexCount' y
-- @
box :: (Ord a, Ord b) => AdjacencyMap a -> AdjacencyMap b -> AdjacencyMap (a, b)
box (AM x) (AM y) = overlay (AM $ Map.fromAscList xs) (AM $ Map.fromAscList ys)
where
xs = do (a, as) <- Map.toAscList x
b <- Set.toAscList (Map.keysSet y)
return ((a, b), Set.mapMonotonic (,b) as)
ys = do a <- Set.toAscList (Map.keysSet x)
(b, bs) <- Map.toAscList y
return ((a, b), Set.mapMonotonic (a,) bs)
-- | Compute the /reflexive and transitive closure/ of a graph.
-- Complexity: /O(n * m * log(n)^2)/ time.
--
-- @
-- closure 'empty' == 'empty'
-- closure ('vertex' x) == 'edge' x x
-- closure ('edge' x x) == 'edge' x x
-- closure ('edge' x y) == 'edges' [(x,x), (x,y), (y,y)]
-- closure ('path' $ 'Data.List.nub' xs) == 'reflexiveClosure' ('clique' $ 'Data.List.nub' xs)
-- closure == 'reflexiveClosure' . 'transitiveClosure'
-- closure == 'transitiveClosure' . 'reflexiveClosure'
-- closure . closure == closure
-- 'postSet' x (closure y) == Set.'Set.fromList' ('Algebra.Graph.ToGraph.reachable' y x)
-- @
closure :: Ord a => AdjacencyMap a -> AdjacencyMap a
closure = reflexiveClosure . transitiveClosure
-- | Compute the /reflexive closure/ of a graph by adding a self-loop to every
-- vertex.
-- Complexity: /O(n * log(n))/ time.
--
-- @
-- reflexiveClosure 'empty' == 'empty'
-- reflexiveClosure ('vertex' x) == 'edge' x x
-- reflexiveClosure ('edge' x x) == 'edge' x x
-- reflexiveClosure ('edge' x y) == 'edges' [(x,x), (x,y), (y,y)]
-- reflexiveClosure . reflexiveClosure == reflexiveClosure
-- @
reflexiveClosure :: Ord a => AdjacencyMap a -> AdjacencyMap a
reflexiveClosure (AM m) = AM $ Map.mapWithKey Set.insert m
-- | Compute the /symmetric closure/ of a graph by overlaying it with its own
-- transpose.
-- Complexity: /O((n + m) * log(n))/ time.
--
-- @
-- symmetricClosure 'empty' == 'empty'
-- symmetricClosure ('vertex' x) == 'vertex' x
-- symmetricClosure ('edge' x y) == 'edges' [(x,y), (y,x)]
-- symmetricClosure x == 'overlay' x ('transpose' x)
-- symmetricClosure . symmetricClosure == symmetricClosure
-- @
symmetricClosure :: Ord a => AdjacencyMap a -> AdjacencyMap a
symmetricClosure m = overlay m (transpose m)
-- | Compute the /transitive closure/ of a graph.
-- Complexity: /O(n * m * log(n)^2)/ time.
--
-- @
-- transitiveClosure 'empty' == 'empty'
-- transitiveClosure ('vertex' x) == 'vertex' x
-- transitiveClosure ('edge' x y) == 'edge' x y
-- transitiveClosure ('path' $ 'Data.List.nub' xs) == 'clique' ('Data.List.nub' xs)
-- transitiveClosure . transitiveClosure == transitiveClosure
-- @
transitiveClosure :: Ord a => AdjacencyMap a -> AdjacencyMap a
transitiveClosure old
| old == new = old
| otherwise = transitiveClosure new
where
new = overlay old (old `compose` old)
-- | Check that the internal graph representation is consistent, i.e. that all
-- edges refer to existing vertices. It should be impossible to create an
-- inconsistent adjacency map, and we use this function in testing.
--
-- @
-- consistent 'empty' == True
-- consistent ('vertex' x) == True
-- consistent ('overlay' x y) == True
-- consistent ('connect' x y) == True
-- consistent ('edge' x y) == True
-- consistent ('edges' xs) == True
-- consistent ('stars' xs) == True
-- @
consistent :: Ord a => AdjacencyMap a -> Bool
consistent (AM m) = referredToVertexSet m `Set.isSubsetOf` Map.keysSet m
-- The set of vertices that are referred to by the edges of an adjacency map.
referredToVertexSet :: Ord a => Map a (Set a) -> Set a
referredToVertexSet m = Set.fromList $ concat
[ [x, y] | (x, ys) <- Map.toAscList m, y <- Set.toAscList ys ]