-
Notifications
You must be signed in to change notification settings - Fork 28
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Speed benchmark on OpenSpiel and PettingZoo (#394)
- Loading branch information
Showing
5 changed files
with
225 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
from vector_env import SyncVectorEnv | ||
import argparse | ||
import time | ||
import numpy as np | ||
import collections | ||
|
||
|
||
def make_single_env(env_name: str, seed: int): | ||
import pyspiel | ||
from open_spiel.python.rl_environment import Environment, ChanceEventSampler | ||
def gen_env(): | ||
game = pyspiel.load_game(env_name) | ||
return Environment(game, chance_event_sampler=ChanceEventSampler(seed=seed)) | ||
return gen_env() | ||
|
||
|
||
def make_env(env_name: str, n_envs: int, seed: int) -> SyncVectorEnv: | ||
return SyncVectorEnv([make_single_env(env_name, seed) for i in range(n_envs)]) | ||
|
||
|
||
def random_play(env: SyncVectorEnv, n_steps_lim: int, batch_size: int): | ||
# random play for open spiel | ||
StepOutput = collections.namedtuple("step_output", ["action"]) | ||
time_step = env.reset() | ||
rng = np.random.default_rng() | ||
step_num = 0 | ||
while step_num < n_steps_lim: | ||
legal_actions = np.array([ts.observations["legal_actions"][ts.observations["current_player"]] for ts in time_step]) | ||
assert len(env.envs) == len(legal_actions) # ensure parallerization | ||
action = [rng.choice(legal_actions[i]) for i in range(len(legal_actions))] | ||
step_outputs = [StepOutput(action=a) for a in action] | ||
time_step, reward, done, unreset_time_steps = env.step(step_outputs, reset_if_done=True) | ||
step_num += batch_size | ||
return step_num | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("env_name") | ||
parser.add_argument("batch_size", type=int) | ||
parser.add_argument("n_steps_lim", type=int) | ||
parser.add_argument("--seed", default=100, type=bool) | ||
args = parser.parse_args() | ||
assert args.n_steps_lim % args.batch_size == 0 | ||
env = make_env(args.env_name, args.batch_size, args.seed) | ||
time_sta = time.time() | ||
step_num = random_play(env, args.n_steps_lim, args.batch_size) | ||
time_end = time.time() | ||
print((step_num)/(time_end-time_sta), time_end-time_sta) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,45 @@ | ||
from tianshou_env.pettingzoo_env import OpenSpielEnv | ||
from tianshou_env.venvs import SubprocVectorEnv | ||
import numpy as np | ||
import time | ||
import argparse | ||
|
||
|
||
def make_single_env(env_name: str, seed: int): | ||
import pyspiel | ||
from open_spiel.python.rl_environment import Environment, ChanceEventSampler | ||
def gen_env(): | ||
game = pyspiel.load_game(env_name) | ||
return Environment(game, chance_event_sampler=ChanceEventSampler(seed=seed)) | ||
return gen_env() | ||
|
||
def make_env(env_name: str, n_envs: int, seed: int): | ||
return SubprocVectorEnv([lambda: OpenSpielEnv(make_single_env(env_name, seed)) for _ in range(n_envs)]) | ||
|
||
|
||
def random_play(env: SubprocVectorEnv, n_steps_lim: int, batch_size: int): | ||
step_num = 0 | ||
rng = np.random.default_rng() | ||
observation, info = env.reset() | ||
terminated = np.zeros(len(env._env_fns)) | ||
while step_num < n_steps_lim: | ||
legal_action_mask = [observation[i]["mask"] for i in range(len(observation))] | ||
action = [rng.choice(legal_action_mask[i]) for i in range(len(legal_action_mask))] # chose action randomly | ||
observation, reward, terminated, _, info = env.step(action) | ||
step_num += batch_size | ||
return step_num | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("env_name") | ||
parser.add_argument("batch_size", type=int) | ||
parser.add_argument("n_steps_lim", type=int) | ||
parser.add_argument("--seed", default=100, type=bool) | ||
args = parser.parse_args() | ||
assert args.n_steps_lim % args.batch_size == 0 | ||
env = make_env(args.env_name, args.batch_size, args.seed) | ||
time_sta = time.time() | ||
step_num = random_play(env, args.n_steps_lim, args.batch_size) | ||
time_end = time.time() | ||
print((step_num)/(time_end-time_sta)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
import argparse | ||
import time | ||
import numpy as np | ||
import collections | ||
from tianshou.env import DummyVectorEnv | ||
from tianshou.env.pettingzoo_env import PettingZooEnv | ||
from pettingzoo.classic.tictactoe import tictactoe | ||
|
||
class AutoResetPettingZooEnv(PettingZooEnv): | ||
def __init__(self, env): | ||
super().__init__(env) | ||
|
||
def step(self, action): | ||
obs, reward, term, trunc, info = super().step(action) | ||
if term: | ||
obs = super().reset() | ||
return obs, reward, term, trunc, info | ||
|
||
|
||
def make_env(env_name, n_envs): | ||
from pettingzoo.classic.go import go | ||
#from pettingzoo.classic import chess_v5 | ||
def get_go_env(): | ||
return AutoResetPettingZooEnv(go.env()) | ||
def get_tictactoe_env(): | ||
return AutoResetPettingZooEnv(tictactoe.env()) | ||
if env_name == "go": | ||
return DummyVectorEnv([get_go_env for _ in range(n_envs)]) | ||
elif env_name == "tictactoe": | ||
return DummyVectorEnv([get_tictactoe_env for _ in range(n_envs)]) | ||
elif env_name == "chess": | ||
#return chess_v5.env() | ||
raise ValueError("Chess will be added later") | ||
else: | ||
raise ValueError("no such environment in petting zoo") | ||
|
||
|
||
def random_play(env: DummyVectorEnv, n_steps_lim: int, batch_size: int) -> int: | ||
# petting zooのgo環境でrandom gaentを終局まで動かす. | ||
step_num = 0 | ||
rng = np.random.default_rng() | ||
observation = env.reset() | ||
terminated = np.zeros(len(env._env_fns)) | ||
while step_num < n_steps_lim: | ||
assert len(env._env_fns) == len(observation) # ensure parallerization | ||
legal_action_mask = np.array([observation[i]["mask"] for i in range(len(observation))]) | ||
action = [rng.choice(np.where(legal_action_mask[i]==1)[0]) for i in range(len(legal_action_mask))] # chose action randomly | ||
observation, reward, terminated, _, _ = env.step(action) | ||
step_num += batch_size | ||
return step_num | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("env_name") | ||
parser.add_argument("batch_size", type=int) | ||
parser.add_argument("n_steps_lim", type=int) | ||
args = parser.parse_args() | ||
assert args.n_steps_lim % args.batch_size == 0 | ||
env = make_env(args.env_name, args.batch_size) | ||
time_sta = time.time() | ||
step_num = random_play(env, args.n_steps_lim, args.batch_size) | ||
time_end = time.time() | ||
print((step_num)/(time_end-time_sta)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
from tianshou.env import SubprocVectorEnv | ||
from pettingzoo.classic.go import go | ||
from pettingzoo.classic.tictactoe import tictactoe | ||
from tianshou.env.pettingzoo_env import PettingZooEnv | ||
import argparse | ||
import numpy as np | ||
import time | ||
|
||
class AutoResetPettingZooEnv(PettingZooEnv): # 全体でpetting_zooの関数, classをimportするとopen_spielの速度が落ちる. | ||
def __init__(self, env): | ||
super().__init__(env) | ||
|
||
def step(self, action): | ||
obs, reward, term, trunc, info = super().step(action) | ||
if term: | ||
obs = super().reset() | ||
return obs, reward, term, trunc, info | ||
|
||
|
||
def make_env(env_name, n_envs): | ||
|
||
#from pettingzoo.classic import chess_v5 | ||
def get_go_env(): | ||
return AutoResetPettingZooEnv(go.env()) | ||
def get_tictactoe_env(): | ||
return AutoResetPettingZooEnv(tictactoe.env()) | ||
if env_name == "go": | ||
return SubprocVectorEnv([get_go_env for _ in range(n_envs)]) | ||
elif env_name == "tictactoe": | ||
return SubprocVectorEnv([get_tictactoe_env for _ in range(n_envs)]) | ||
elif env_name == "chess": | ||
#return chess_v5.env() | ||
raise ValueError("Chess will be added later") | ||
else: | ||
raise ValueError("no such environment in petting zoo") | ||
|
||
|
||
def random_play(env, n_steps_lim: int, batch_size: int) -> int: | ||
# petting zooのgo環境でrandom gaentを終局まで動かす. | ||
step_num = 0 | ||
rng = np.random.default_rng() | ||
observation = env.reset() | ||
terminated = np.zeros(len(env._env_fns)) | ||
while step_num < n_steps_lim: | ||
assert len(env._env_fns) == len(observation) # ensure parallerization | ||
legal_action_mask = np.array([observation[i]["mask"] for i in range(len(observation))]) | ||
action = [rng.choice(np.where(legal_action_mask[i]==1)[0]) for i in range(len(legal_action_mask))] # chose action randomly | ||
observation, reward, terminated, _, _ = env.step(action) | ||
step_num += batch_size | ||
return step_num | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("env_name") | ||
parser.add_argument("batch_size", type=int) | ||
parser.add_argument("n_steps_lim", type=int) | ||
args = parser.parse_args() | ||
assert args.n_steps_lim % args.batch_size == 0 | ||
env = make_env(args.env_name, args.batch_size) | ||
time_sta = time.time() | ||
step_num = random_play(env, args.n_steps_lim, args.batch_size) | ||
time_end = time.time() | ||
print((step_num)/(time_end-time_sta)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters