-
Notifications
You must be signed in to change notification settings - Fork 39
/
generate_dist.py
428 lines (352 loc) · 16.7 KB
/
generate_dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
''' consistent initial noise for video generation'''
import cv2
import os
from os.path import join, basename, dirname, splitext
import shutil
import argparse
import numpy as np
import random
import torch, torchvision
import subprocess
from audio import audio
import face_detection
from tqdm import tqdm
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from guided_diffusion import dist_util, logger
from guided_diffusion.resample import create_named_schedule_sampler
from guided_diffusion.script_util import (
tfg_model_and_diffusion_defaults,
tfg_create_model_and_diffusion,
args_to_dict,
add_dict_to_argparser,
)
from time import time
import torch.distributed as dist
from guided_diffusion.tfg_data_util import (
tfg_process_batch,
)
def get_frame_id(frame):
return int(basename(frame).split('.')[0])
def crop_audio_window(spec, start_frame, args ):
if type(start_frame) == int:
start_frame_num = start_frame
else:
start_frame_num = get_frame_id(start_frame)
start_idx = int(args.mel_steps_per_sec * (start_frame_num / float(args.video_fps)))
end_idx = start_idx + args.syncnet_mel_step_size
return spec[start_idx : end_idx, :]
def load_all_indiv_mels(path, args):
in_path = path
out_dir = join(args.sample_path, "temp",str(dist.get_rank()), basename(in_path).replace(".mp4", ""))
os.makedirs(out_dir, exist_ok= True)
out_path = join(out_dir, "audio.wav")
command2 = 'ffmpeg -loglevel error -y -i {} -strict -2 {}'.format(in_path, out_path)
subprocess.call(command2, shell=True)
wav = audio.load_wav(out_path, args.sample_rate)
orig_mel = audio.melspectrogram(wav).T
all_indiv_mels = []
# i=0
i=1
while True:
m = crop_audio_window(orig_mel.copy(), max(i - args.syncnet_T//2,0), args)
if (m.shape[0] != args.syncnet_mel_step_size):
break
all_indiv_mels.append(m.T)
i+=1
#clean up
shutil.rmtree(join(args.sample_path, "temp", str(dist.get_rank())))
return all_indiv_mels, wav
def load_video_frames(path, args):
in_path = path
out_dir = join(args.sample_path, "temp", str(dist.get_rank()), basename(in_path).replace(".mp4", ""), "image")
os.makedirs(out_dir, exist_ok= True)
command = "ffmpeg -loglevel error -y -i {} -vf fps={} -q:v 2 -qmin 1 {}/%05d.jpg".format(in_path, args.video_fps, out_dir)
subprocess.call(command, shell=True)
video_frames=[]
for i, img_name in enumerate(sorted(os.listdir(out_dir))):
img_path=join(out_dir, img_name)
img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
video_frames.append(img)
#clean up
shutil.rmtree(join(args.sample_path, "temp", str(dist.get_rank())))
return video_frames
def get_smoothened_boxes(boxes, T):
for i in range(len(boxes)):
if i + T > len(boxes):
window = boxes[len(boxes) - T:]
else:
window = boxes[i : i + T]
boxes[i] = np.mean(window, axis=0)
return boxes
def my_voxceleb2_crop(img):
return img[:-int(img.shape[0]*2.36/8) , int(img.shape[1]*1.8/8): -int(img.shape[1]*1.8/8)]
def my_voxceleb2_crop_bboxs(img):
return 0,img.shape[0]-int(img.shape[0]*2.36/8), int(img.shape[1]*1.8/8), img.shape[1]-int(img.shape[1]*1.8/8)
def face_detect(images, detector, args, resize=False):
batch_size = args.face_det_batch_size
while 1:
predictions = []
try:
for i in range(0, len(images), batch_size):
predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
except RuntimeError:
if batch_size == 1:
raise RuntimeError('Image too big to run face detection on GPU')
batch_size //= 2
args.face_det_batch_size = batch_size
print('Recovering from OOM error; New batch size: {}'.format(batch_size))
continue
break
results = []
if type(args.pads) == str :
args.pads = [int(x) for x in args.pads.split(",")]
pady1, pady2, padx1, padx2 = args.pads
for rect, image in zip(predictions, images):
if rect is None:
raise ValueError('Face not detected!')
y1 = max(0, rect[1] - pady1)
y2 = min(image.shape[0], rect[3] + pady2)
x1 = max(0, rect[0] - padx1)
x2 = min(image.shape[1], rect[2] + padx2)
results.append([x1, y1, x2, y2])
boxes = get_smoothened_boxes(np.array(results), T=5)
if resize:
if args.is_voxceleb2:
results = [[cv2.resize(my_voxceleb2_crop(image),(args.image_size, args.image_size)), my_voxceleb2_crop_bboxs(image), True] for image, (x1, y1, x2, y2) in zip(images, boxes)]
else:
results = [[cv2.resize(image[y1: y2, x1:x2],(args.image_size, args.image_size)), (y1, y2, x1, x2), True] for image, (x1, y1, x2, y2) in zip(images, boxes)]
else:
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2), True] for image, (x1, y1, x2, y2) in zip(images, boxes)]
return results
def normalise(tensor):
""" [-1,1]->[0,1]"""
return ((tensor+1)*0.5).clamp(0,1)
def normalise2(tensor):
""" [0,1]->[-1,1]"""
return (tensor*2-1).clamp(-1,1)
def sample_batch(batch, model, diffusion, args):
B, F, C, H, W = batch[f'image'].shape
sample_shape = (B*F, C, H, W)
#generate fixed noise
init_noise = None
if args.sampling_seed:
state = torch.get_rng_state()
torch.manual_seed(args.sampling_seed)
torch.cuda.manual_seed_all(args.sampling_seed)
init_noise = torch.randn((1,C,H,W))
#repeat noise for all frames
init_noise = init_noise.repeat(B*F,1,1,1)
torch.set_rng_state(state)
img_batch, model_kwargs = tfg_process_batch(batch, args.face_hide_percentage,
use_ref=args.use_ref,
use_audio=args.use_audio,
# sampling_use_gt_for_ref=args.sampling_use_gt_for_ref,
noise=init_noise)
img_batch = img_batch.to(dist_util.dev())
model_kwargs = {k: v.to(dist_util.dev()) for k,v in model_kwargs.items()}
init_noise = init_noise.to(dist_util.dev()) if init_noise is not None else None
sample_fn = (
diffusion.p_sample_loop if not args.use_ddim else diffusion.ddim_sample_loop
)
sample = sample_fn(
model,
sample_shape,
clip_denoised=args.clip_denoised,
model_kwargs=model_kwargs,
noise = init_noise
)
return sample, img_batch, model_kwargs
def generate(video_path, audio_path, model, diffusion, detector, args, out_path=None, save_orig=True):
video_frames = load_video_frames(video_path, args)
try:
face_det_results = face_detect(video_frames.copy(), detector, args, resize=True)
except Exception as e:
print("Error:", e, video_path, audio_path)
import traceback
print(traceback.format_exc())
wrong_all_indiv_mels, wrong_audio_wavform = load_all_indiv_mels(audio_path, args)
min_frames = min(len(video_frames), len(wrong_all_indiv_mels))
video_frames = video_frames[:min_frames]
face_det_results = face_det_results[:min_frames]
face_bboxes = [face_det_results[i][1] for i in range(min_frames)]
face_frames = torch.FloatTensor(np.transpose(np.asarray([face_det_results[i][0] for i in range(min_frames)], dtype=np.float32)/255.,(0,3,1,2)))#[N, C, H, W]
wrong_all_indiv_mels = torch.FloatTensor(np.asarray(wrong_all_indiv_mels[:min_frames])).unsqueeze(1) #[N, 1, h, w]
if save_orig:
if out_path is None:
out_path_orig = os.path.join(args.sample_path, splitext(basename(video_path))[0]+"_"+ splitext(basename(audio_path))[0]+"_orig.mp4")
else:
out_path_orig = out_path.replace(".mp4", "_orig.mp4")
torchvision.io.write_video(
out_path_orig,
video_array=torch.from_numpy(np.array(video_frames)), fps = args.video_fps, video_codec='libx264',
audio_array=torch.from_numpy(wrong_audio_wavform).unsqueeze(0), audio_fps=args.sample_rate, audio_codec='aac'
)
if args.sampling_ref_type=='gt':
ref_frames = face_frames.clone()
elif args.sampling_ref_type=='first_frame':
ref_frames = face_frames[0:1].repeat(len(face_frames),1,1,1)
elif args.sampling_ref_type=='random':
rand_idx = random.Random(args.sampling_seed).randint(0, len(face_frames)-1)
ref_frames = face_frames[rand_idx:rand_idx+1].repeat(len(face_frames),1,1,1)
if args.sampling_input_type=='first_frame':
face_frames = face_frames[0:1].repeat(len(face_frames),1,1,1)
video_frames = np.array(video_frames[0:1]*len(video_frames))
face_bboxes = np.array(face_bboxes[0:1]*len(face_bboxes))
rank = dist.get_rank()
world_size = dist.get_world_size()
chunk_size = int(np.ceil(min_frames/world_size))
start_idx = rank * chunk_size
end_idx = min(start_idx + chunk_size, min_frames)
generated_video_frames = []
b_s = args.sampling_batch_size
# print(rank,"/",world_size, "chunk: [",start_idx,"-", end_idx,"/",min_frames,"]")
dist.barrier()
torch.cuda.synchronize()
t1=time()
# for i in range(0,min_frames, b_s*args.nframes):
for i in range(start_idx,end_idx, b_s*args.nframes):
slice_end = min(i+b_s*args.nframes, end_idx)
# if rank==0:
# print("rank 0: slice:",i,":",slice_end)
video_frames_batch = video_frames[i:slice_end]
face_bboxes_batch = face_bboxes[i:slice_end]
# try:
if (slice_end-i) % args.nframes==0:
img_batch = face_frames[i:slice_end] #[BF, C, H, W]
img_batch = img_batch.reshape(-1, args.nframes, img_batch.size(-3), img_batch.size(-2), img_batch.size(-1))
ref_batch = ref_frames[i:slice_end]
ref_batch = ref_batch.reshape(-1, args.nframes, ref_batch.size(-3), ref_batch.size(-2), ref_batch.size(-1))
wrong_indiv_mel_batch = wrong_all_indiv_mels[i:slice_end] #[BF, 1, h, w]
wrong_indiv_mel_batch = wrong_indiv_mel_batch.reshape(-1, args.nframes, wrong_indiv_mel_batch.size(-3),wrong_indiv_mel_batch.size(-2),wrong_indiv_mel_batch.size(-1))
# except:
else: # of the last batch, if B*F % nframes!=0, then the above reshape throws error
# but internally everything is going to get converted to BF
# ie. (B,F, C, H, W) -> (B*F, C, H, W) but (B*F, 1, C, H, W) -> (B*F, C, H, W)
img_batch = face_frames[i:slice_end] #[BF, C, H, W]
img_batch = img_batch.reshape(-1, 1, img_batch.size(-3), img_batch.size(-2), img_batch.size(-1))
ref_batch = ref_frames[i:slice_end]
ref_batch = ref_batch.reshape(-1, 1, ref_batch.size(-3), ref_batch.size(-2), ref_batch.size(-1))
wrong_indiv_mel_batch = wrong_all_indiv_mels[i:slice_end] #[BF, 1, h, w]
wrong_indiv_mel_batch = wrong_indiv_mel_batch.reshape(-1, 1, wrong_indiv_mel_batch.size(-3),wrong_indiv_mel_batch.size(-2),wrong_indiv_mel_batch.size(-1))
batch = {"image":img_batch,
"ref_img":ref_batch,
"indiv_mels":wrong_indiv_mel_batch}
sample, img_batch, model_kwargs = sample_batch(batch, model, diffusion, args)
mask = model_kwargs['mask']
recon_batch = sample * mask + (1. -mask)*img_batch #[BF, C, H, W]
recon_batch = (normalise(recon_batch)*255).cpu().numpy().transpose(0,2,3,1) #[-1,1] -> [0,255]
for g,v,b in zip(recon_batch, video_frames_batch, face_bboxes_batch):
y1, y2, x1, x2 = b
g = cv2.resize(g.astype(np.uint8), (x2 - x1, y2 - y1))
v[y1:y2, x1:x2] = g
generated_video_frames.append(v)
torch.cuda.synchronize()
t3=time()
all_generated_video_frames = [None for _ in range(dist.get_world_size())]
dist.all_gather_object(all_generated_video_frames, generated_video_frames) # gather not supported with NCCL
all_generated_video_frames_combined = []
[all_generated_video_frames_combined.extend(gvf) for gvf in all_generated_video_frames]
generated_video_frames = all_generated_video_frames_combined
torch.cuda.synchronize()
t2=time()
if dist.get_rank() == 0:
print("Time taken for sampling, ", t2-t1, ",time without all gather, ", t3-t1, ",frames/gpu, ", len(generated_video_frames), ",total frames, ", min_frames)
print(wrong_audio_wavform.shape, np.array(generated_video_frames).shape)
min_time = len(generated_video_frames)/args.video_fps # because video is already smaller because it got chopped accoding to the mel array length
wrong_audio_wavform = wrong_audio_wavform[:int(min_time*args.sample_rate)]
print(wrong_audio_wavform.shape, np.array(generated_video_frames).shape)
if out_path is None:
out_path = os.path.join(args.sample_path, splitext(basename(video_path))[0]+"_"+ splitext(basename(audio_path))[0]+".mp4")
torchvision.io.write_video(
out_path,
video_array=torch.from_numpy(np.array(generated_video_frames)), fps = args.video_fps, video_codec='libx264',
audio_array=torch.from_numpy(wrong_audio_wavform).unsqueeze(0), audio_fps=args.sample_rate, audio_codec='aac'
)
dist.barrier()
def generate_from_filelist(test_video_dir, filelist, model, diffusion, detector, args):
video_names = []
audio_names = []
with open(filelist, "r") as f:
lines = f.readlines()
for line in tqdm(lines):
try:
audio_name, video_name = line.strip().split()
audio_path = join(test_video_dir, audio_name+'.mp4')
video_path = join(test_video_dir, video_name+'.mp4')
out_path = join(args.sample_path,audio_name.replace('/','.')+"_"+video_name.replace('/','.')+".mp4")
generate(video_path, audio_path, model, diffusion, detector, args, out_path=out_path ,save_orig=args.save_orig)
except Exception as e:
print("Error:", e, video_path, audio_path)
import traceback
print(traceback.format_exc())
def main():
args = create_argparser().parse_args()
dist_util.setup_dist()
logger.configure(dir=args.sample_path, format_strs=["stdout", "log"])
logger.log("creating model...")
model, diffusion = tfg_create_model_and_diffusion(
**args_to_dict(args, tfg_model_and_diffusion_defaults().keys())
)
model.load_state_dict(
dist_util.load_state_dict(args.model_path, map_location='cpu')
)
model.to(dist_util.dev())
if args.use_fp16:
model.convert_to_fp16()
model.eval()
detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device='cuda' if torch.cuda.is_available() else 'cpu')
if args.generate_from_filelist:
generate_from_filelist(args.test_video_dir, args.filelist, model, diffusion, detector, args)
else:
generate(args.video_path, args.audio_path, model, diffusion, detector, args, out_path=args.out_path, save_orig=args.save_orig)
def create_argparser():
defaults = dict(
# generate from a single audio-video pair
generate_from_filelist = False,
video_path = "",
audio_path = "",
out_path = None,
save_orig = True,
#generate from filelist : generate_from_filelist = True
test_video_dir = "test_videos",
filelist = "test_filelist.txt",
use_fp16 = True,
#tfg specific
face_hide_percentage=0.5,
use_ref=False,
use_audio=False,
audio_as_style=False,
audio_as_style_encoder_mlp=False,
#data args
nframes=1,
nrefer=0,
image_size=128,
syncnet_T = 5,
syncnet_mel_step_size = 16,
audio_frames_per_video = 16, #for tfg model, we use sound corresponding to 5 frames centred at that frame
audio_dim=80,
is_voxceleb2=True,
video_fps=25,
sample_rate=16000, #audio sampling rate
mel_steps_per_sec=80.,
#sampling args
clip_denoised=True, # not used in training
sampling_batch_size=2,
use_ddim=False,
model_path="",
sample_path="d2l_gen",
sample_partition="",
sampling_seed=None,
sampling_use_gt_for_ref=False,
sampling_ref_type='gt', #one of ['gt', 'first_frame', 'random']
sampling_input_type='gt', #one of ['gt', 'first_frame']
# face detection args
face_det_batch_size=64,
pads = "0,0,0,0"
)
defaults.update(tfg_model_and_diffusion_defaults())
parser = argparse.ArgumentParser()
add_dict_to_argparser(parser, defaults)
return parser
if __name__=="__main__":
main()