-
Notifications
You must be signed in to change notification settings - Fork 87
/
indexdata.go
515 lines (435 loc) · 14 KB
/
indexdata.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
// Copyright 2016 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package zoekt
import (
"encoding/binary"
"errors"
"fmt"
"hash/crc64"
"log"
"math/bits"
"slices"
"unicode/utf8"
"github.com/sourcegraph/zoekt/query"
)
// indexData holds the pattern-independent data that we have to have
// in memory to search. Most of the memory is taken up by the ngram =>
// offset index.
type indexData struct {
symbols symbolData
file IndexFile
contentNgrams btreeIndex
newlinesStart uint32
newlinesIndex []uint32
docSectionsStart uint32
docSectionsIndex []uint32
runeDocSections []DocumentSection
// rune offset=>byte offset mapping, relative to the start of the content corpus
runeOffsets runeOffsetMap
// offsets of file contents; includes end of last file
boundariesStart uint32
boundaries []uint32
// rune offsets for the file content boundaries
fileEndRunes []uint32
fileNameContent []byte
fileNameIndex []uint32
fileNameNgrams btreeIndex
// fileEndSymbol[i] is the index of the first symbol for document i.
fileEndSymbol []uint32
// rune offset=>byte offset mapping, relative to the start of the filename corpus
fileNameRuneOffsets runeOffsetMap
// rune offsets for the file name boundaries
fileNameEndRunes []uint32
fileBranchMasks []uint64
// mask (power of 2) => name
branchNames []map[uint]string
// name => mask (power of 2)
branchIDs []map[string]uint
metaData IndexMetadata
repoMetaData []Repository
subRepos []uint32
subRepoPaths [][]string
// Checksums for all the files, at 8-byte intervals
checksums []byte
// languages for all the files.
languages []byte
// inverse of LanguageMap in metaData
languageMap map[uint16]string
repoListEntry []RepoListEntry
// repository indexes for all the files
repos []uint16
// rawConfigMasks contains the encoded RawConfig for each repository
rawConfigMasks []uint8
}
type symbolData struct {
// symContent stores Symbol.Sym and Symbol.Parent.
// TODO we don't need to store Symbol.Sym.
symContent []byte
symIndex []byte
// symKindContent is an enum of sym.Kind and sym.ParentKind
symKindContent []byte
symKindIndex []uint32
// symMetadata is [4]uint32 0 Kind Parent ParentKind
symMetaData []byte
}
func uint32SliceAt(a []byte, n uint32) uint32 {
return binary.BigEndian.Uint32(a[n*4:])
}
func uint32SliceLen(a []byte) uint32 {
return uint32(len(a) / 4)
}
// parent returns index i of the parent enum
func (d *symbolData) parent(i uint32) []byte {
delta := uint32SliceAt(d.symIndex, 0)
start := uint32SliceAt(d.symIndex, i) - delta
var end uint32
if i+1 == uint32SliceLen(d.symIndex) {
end = uint32(len(d.symContent))
} else {
end = uint32SliceAt(d.symIndex, i+1) - delta
}
return d.symContent[start:end]
}
// kind returns index i of the kind enum
func (d *symbolData) kind(i uint32) []byte {
return d.symKindContent[d.symKindIndex[i]:d.symKindIndex[i+1]]
}
// data returns the symbol at index i
func (d *symbolData) data(i uint32) *Symbol {
size := uint32(4 * 4) // 4 uint32s
offset := i * size
if offset >= uint32(len(d.symMetaData)) {
return nil
}
metadata := d.symMetaData[offset : offset+size]
sym := &Symbol{}
key := uint32SliceAt(metadata, 1)
sym.Kind = string(d.kind(key))
key = uint32SliceAt(metadata, 2)
sym.Parent = string(d.parent(key))
key = uint32SliceAt(metadata, 3)
sym.ParentKind = string(d.kind(key))
return sym
}
func (d *indexData) getChecksum(idx uint32) []byte {
start := crc64.Size * idx
return d.checksums[start : start+crc64.Size]
}
func (d *indexData) getLanguage(idx uint32) uint16 {
if d.metaData.IndexFeatureVersion < 12 {
// older zoekt files had 8-bit language entries
return uint16(d.languages[idx])
}
// newer zoekt files have 16-bit language entries
return uint16(d.languages[idx*2]) | uint16(d.languages[idx*2+1])<<8
}
// calculates stats for files in the range [start, end).
func (d *indexData) calculateStatsForFileRange(start, end uint32) RepoStats {
if start >= end {
// An empty shard for an empty repository.
return RepoStats{
Shards: 1,
}
}
bytesContent := d.boundaries[end] - d.boundaries[start]
bytesFN := d.fileNameIndex[end] - d.fileNameIndex[start]
count, defaultCount, otherCount := d.calculateNewLinesStats(start, end)
// CR keegan for stefan: I think we may want to restructure RepoListEntry so
// that we don't change anything, except we have
// []Repository. Alternatively, things we can divide up we do (like
// here). Right now I don't like that these numbers are not true, especially
// after aggregation. For now I will move forward with this until we can
// chat more.
return RepoStats{
ContentBytes: int64(bytesContent) + int64(bytesFN),
Documents: int(end - start),
// CR keegan for stefan: our shard count is going to go out of whack,
// since we will aggregate these. So we will report more shards than are
// present on disk. What should we do?
Shards: 1,
// Sourcegraph specific
NewLinesCount: count,
DefaultBranchNewLinesCount: defaultCount,
OtherBranchesNewLinesCount: otherCount,
}
}
func (d *indexData) calculateStats() error {
d.repoListEntry = make([]RepoListEntry, 0, len(d.repoMetaData))
var start, end uint32
for repoID, md := range d.repoMetaData {
// determine the file range for repo i
for end < uint32(len(d.repos)) && d.repos[end] == uint16(repoID) {
end++
}
if start < end && d.repos[start] != uint16(repoID) {
return fmt.Errorf("shard documents out of order with respect to repositories: expected document %d to be part of repo %d", start, repoID)
}
d.repoListEntry = append(d.repoListEntry, RepoListEntry{
Repository: md,
IndexMetadata: d.metaData,
Stats: d.calculateStatsForFileRange(start, end),
})
start = end
}
// All repos in a compound shard share memoryUse. So we average out the
// memoryUse per shard in our reporting. This has the benefit that when you
// aggregate the IndexBytes you get back the actual memoryUse.
//
// TODO take into account tombstones for aggregation. Even better, adjust
// API to be shard centric not repo centric.
if len(d.repoListEntry) > 0 {
indexBytes := d.memoryUse()
indexBytesChunk := indexBytes / len(d.repoListEntry)
for i := range d.repoListEntry {
d.repoListEntry[i].Stats.IndexBytes = int64(indexBytesChunk)
indexBytes -= indexBytesChunk
}
d.repoListEntry[0].Stats.IndexBytes += int64(indexBytes)
}
return nil
}
// calculateNewLinesStats computes some Sourcegraph specific statistics for files
// in the range [start, end). These are not as efficient to calculate as the
// normal statistics. We experimentally measured about a 10% slower shard load
// time. However, we find these values very useful to track and computing them
// outside of load time introduces a lot of complexity.
func (d *indexData) calculateNewLinesStats(start, end uint32) (count, defaultCount, otherCount uint64) {
for i := start; i < end; i++ {
// branchMask is a bitmask of the branches for a document. Zoekt by
// convention represents the default branch as the lowest bit.
branchMask := d.fileBranchMasks[i]
isDefault := (branchMask & 1) == 1
others := uint64(bits.OnesCount64(branchMask >> 1))
// this is readNewlines but only reading the size of each section which
// corresponds to the number of newlines.
sec := simpleSection{
off: d.newlinesStart + d.newlinesIndex[i],
sz: d.newlinesIndex[i+1] - d.newlinesIndex[i],
}
// We are only reading the first varint which is the size. So we don't
// need to read more than MaxVarintLen64 bytes.
if sec.sz > binary.MaxVarintLen64 {
sec.sz = binary.MaxVarintLen64
}
blob, err := d.readSectionBlob(sec)
if err != nil {
log.Printf("error reading newline index for document %d on shard %s: %v", i, d.file.Name(), err)
continue
}
sz, _ := binary.Uvarint(blob)
count += sz
if isDefault {
defaultCount += sz
}
otherCount += (others * sz)
}
return
}
func (d *indexData) String() string {
return fmt.Sprintf("shard(%s)", d.file.Name())
}
// calculates an approximate size of indexData in memory in bytes.
func (d *indexData) memoryUse() int {
sz := 0
for _, a := range [][]uint32{
d.newlinesIndex, d.docSectionsIndex,
d.boundaries, d.fileNameIndex,
d.fileEndRunes, d.fileNameEndRunes,
d.fileEndSymbol, d.symbols.symKindIndex,
d.subRepos,
} {
sz += 4 * len(a)
}
sz += d.runeOffsets.sizeBytes()
sz += d.fileNameRuneOffsets.sizeBytes()
sz += len(d.languages)
sz += len(d.checksums)
sz += 2 * len(d.repos)
sz += 8 * len(d.runeDocSections)
sz += 8 * len(d.fileBranchMasks)
sz += d.contentNgrams.SizeBytes()
sz += d.fileNameNgrams.SizeBytes()
return sz
}
// findSelectiveNgrams returns two ngrams to pass to the distance iterator, chosen to
// produce a small file intersection. It finds the two lowest frequency ngrams, but avoids
// overlapping trigrams to keep their intersection as small as possible.
//
// Invariant: first will always have a smaller index than last.
func findSelectiveNgrams(ngramOffs []runeNgramOff, indexMap []int, frequencies []uint32) (first, last runeNgramOff) {
first, last = minFrequencyNgramOffsets(ngramOffs, frequencies)
// If the trigrams are overlapping, then try to shift one to reduce overlap.
// This is guaranteed to produce a smaller intersection.
if last.index-first.index < ngramSize {
newFirstIndex := max(last.index-ngramSize, 0)
if newFirstIndex != first.index {
first = ngramOffs[indexMap[newFirstIndex]]
}
newLastIndex := min(first.index+ngramSize, len(ngramOffs)-1)
if newLastIndex != last.index {
last = ngramOffs[indexMap[newLastIndex]]
}
}
return
}
const maxUInt32 = 0xffffffff
func minFrequencyNgramOffsets(ngramOffs []runeNgramOff, frequencies []uint32) (first, last runeNgramOff) {
// Find the two lowest frequency ngrams.
idx0, idx1 := 0, 0
min0, min1 := uint32(maxUInt32), uint32(maxUInt32)
for i, x := range frequencies {
if x <= min0 {
idx0, idx1 = i, idx0
min0, min1 = x, min0
} else if x <= min1 {
idx1 = i
min1 = x
}
}
first = ngramOffs[idx0]
last = ngramOffs[idx1]
// Ensure first appears before last as a helpful invariant.
if first.index > last.index {
last, first = first, last
}
return
}
func (data *indexData) ngrams(filename bool) btreeIndex {
if filename {
return data.fileNameNgrams
}
return data.contentNgrams
}
type ngramIterationResults struct {
matchIterator
caseSensitive bool
fileName bool
substrBytes []byte
substrLowered []byte
}
func (r *ngramIterationResults) String() string {
return fmt.Sprintf("wrapper(%v)", r.matchIterator)
}
func (r *ngramIterationResults) candidates() []*candidateMatch {
cs := r.matchIterator.candidates()
for _, c := range cs {
c.caseSensitive = r.caseSensitive
c.fileName = r.fileName
c.substrBytes = r.substrBytes
c.substrLowered = r.substrLowered
}
return cs
}
func (d *indexData) iterateNgrams(query *query.Substring) (*ngramIterationResults, error) {
str := query.Pattern
// Find the 2 least common ngrams from the string.
ngramOffs := splitNGrams([]byte(str))
// protect against accidental searching of empty strings
if len(ngramOffs) == 0 {
return nil, errors.New("iterateNgrams needs non empty string")
}
// PERF: Sort to increase the chances adjacent checks are in the same btree
// bucket (which can cause disk IO).
slices.SortFunc(ngramOffs, runeNgramOff.Compare)
frequencies := make([]uint32, 0, len(ngramOffs))
indexMap := make([]int, len(ngramOffs))
ngramLookups := 0
ngrams := d.ngrams(query.FileName)
for i, o := range ngramOffs {
var freq uint32
if query.CaseSensitive {
freq = ngrams.Get(o.ngram).sz
ngramLookups++
} else {
for _, v := range generateCaseNgrams(o.ngram) {
freq += ngrams.Get(v).sz
ngramLookups++
}
}
if freq == 0 {
return &ngramIterationResults{
matchIterator: &noMatchTree{
Why: "freq=0",
Stats: Stats{
NgramLookups: ngramLookups,
},
},
}, nil
}
frequencies = append(frequencies, freq)
indexMap[o.index] = i
}
first, last := findSelectiveNgrams(ngramOffs, indexMap, frequencies)
iter := &ngramDocIterator{
leftPad: uint32(first.index),
rightPad: uint32(utf8.RuneCountInString(str) - first.index),
ngramLookups: ngramLookups,
}
if query.FileName {
iter.ends = d.fileNameEndRunes
} else {
iter.ends = d.fileEndRunes
}
if first != last {
runeDist := uint32(last.index - first.index)
i, err := d.newDistanceTrigramIter(first.ngram, last.ngram, runeDist, query.CaseSensitive, query.FileName)
if err != nil {
return nil, err
}
iter.iter = i
} else {
hitIter, err := d.trigramHitIterator(last.ngram, query.CaseSensitive, query.FileName)
if err != nil {
return nil, err
}
iter.iter = hitIter
}
patBytes := []byte(query.Pattern)
lowerPatBytes := toLower(patBytes)
return &ngramIterationResults{
matchIterator: iter,
caseSensitive: query.CaseSensitive,
fileName: query.FileName,
substrBytes: patBytes,
substrLowered: lowerPatBytes,
}, nil
}
func (d *indexData) fileName(i uint32) []byte {
return d.fileNameContent[d.fileNameIndex[i]:d.fileNameIndex[i+1]]
}
func (d *indexData) numDocs() uint32 {
return uint32(len(d.fileBranchMasks))
}
func (s *indexData) Close() {
s.file.Close()
}
const (
rawConfigYes = 1
rawConfigNo = 2
)
// encodeRawConfig encodes a rawConfig map into a uint8 mask.
func encodeRawConfig(rawConfig map[string]string) uint8 {
var encoded uint8
for i, f := range []string{"public", "fork", "archived"} {
var e uint8
v, ok := rawConfig[f]
if ok && v == "1" {
e |= rawConfigYes
} else {
e |= rawConfigNo
}
encoded = encoded | e<<(2*i)
}
return encoded
}