-
Notifications
You must be signed in to change notification settings - Fork 5
/
ft_MHIST_SSL_CL_II.py
453 lines (347 loc) · 17.1 KB
/
ft_MHIST_SSL_CL_II.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
"""
Finetuning Self-Supervised model on MHIST dataset with Curriculum - II (i.e., hard-to-very-hard) stage
"""
import argparse
import os
import time
import random
import numpy as np
import cv2
from PIL import Image
from tqdm import tqdm
import torch.backends.cudnn as cudnn
import torch
from torch.utils.data import Dataset
import torch.optim as optim
import torch.nn as nn
from util import AverageMeter
import torch.nn.functional as F
from collections import OrderedDict
from torchvision import transforms, datasets
from torch.utils.data.sampler import SubsetRandomSampler
from dataset import DatasetMHIST_train
import models.net as net
from albumentations import Compose
#####
def train(args, model, classifier, train_loader, optimizer, epoch):
"""
Fine-tuning the pre-trained SSL model
"""
model.train()
classifier.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
acc = AverageMeter()
end = time.time()
for batch_idx, (input, target) in enumerate(tqdm(train_loader, disable=False)):
# Get inputs and target
input, target = input.float(), target.long()
# Reshape augmented tensors
input, target = input.reshape(-1, 3, args.image_size, args.image_size), target.reshape(-1, )
# Move the variables to Cuda
input, target = input.cuda(), target.cuda()
# compute output ###############################
feats = model(input)
output = classifier(feats)
###### Calculate the loss ##################
loss = F.cross_entropy(output, target, reduction='none')
'Sort the loss in descending order'
loss_sorted, indices = torch.sort(loss, descending=True)
top_k = round(args.alpha * target.size(0)) # Select top_K values for determining the hardness in mini-batch (alpha x batch_size)
# Calculate the adaptive hardness threshold (thres as in Eq. 1 in the paper)
a = 0.7
b = 0.2
thres = a*(1-(batch_idx/len(train_loader))) + b
top_k2 = round(thres * top_k) # Select hardness level again within top_K values (i.e., top-K' as described in paper)
# print('thres=', thres)
# print('top_k=', top_k)
# print('top_k2=', top_k2)
# print('current_batch=', batch_idx)
# print('max_iteration=', len(train_loader))
# Select the hardness in each mini-batch based on top_k values
hard_samples = loss_sorted[0:top_k]
total_sum_hard_samples = sum(hard_samples)
# Select the hardness within top_k values (i.e., top-k')
hard_samples_k = hard_samples[0:top_k2]
total_sum_hard_samples_k = sum(hard_samples_top_k2)
# Select top_k and top_k' output and target values
output = output[indices, :]
target = target[indices]
top_k_output = output[0:top_k]
tok_k_target = target[0:top_k]
k_output = top_k_output[0:top_k2]
k_target = tok_k_target[0:top_k2]
# Check whether total sum exceeds the threshold and update the loss accordingly (Eq. 3 in the paper)
if total_sum_hard_samples_k > (thres * total_sum_hard_samples):
loss = F.cross_entropy(k_output, k_target, reduction='mean')
else:
loss = F.cross_entropy(top_k_output, tok_k_target, reduction='mean')
# compute gradient and do SGD step #############
optimizer.zero_grad()
loss.backward()
optimizer.step()
# compute loss and accuracy ####################
batch_size = target.size(0)
losses.update(loss.item(), batch_size)
pred = torch.argmax(output, dim=1)
acc.update(torch.sum(target == pred).item() / batch_size, batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print statistics and write summary every N batch
if (batch_idx + 1) % args.print_freq == 0:
print('Train: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss {loss.val:.3f} ({loss.avg:.3f})\t'
'acc {acc.val:.3f} ({acc.avg:.3f})'.format(
epoch, batch_idx + 1, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses,
acc=acc))
return losses.avg, acc.avg
#####
def validate(args, model, classifier, val_loader, criterion, epoch):
# switch to evaluate mode
model.eval()
classifier.eval()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
acc = AverageMeter()
with torch.no_grad():
end = time.time()
for batch_idx, (input, target) in enumerate(tqdm(val_loader, disable=False)):
# Get inputs and target
input, target = input.float(), target.long()
# Move the variables to Cuda
input, target = input.cuda(), target.cuda()
# compute output ###############################
feats = model(input)
output = classifier(feats)
loss = criterion(output, target)
# compute loss and accuracy ####################
batch_size = target.size(0)
losses.update(loss.item(), batch_size)
pred = torch.argmax(output, dim=1)
acc.update(torch.sum(target == pred).item() / batch_size, batch_size)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print statistics and write summary every N batch
if (batch_idx + 1) % args.print_freq == 0:
print('Val: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss {loss.val:.3f} ({loss.avg:.3f})\t'
'acc {acc.val:.3f} ({acc.avg:.3f})'.format(
epoch, batch_idx + 1, len(val_loader), batch_time=batch_time, data_time=data_time, loss=losses,
acc=acc))
return losses.avg, acc.avg
def parse_args():
parser = argparse.ArgumentParser('Finetuning Self-Supervised model on MHIST dataset with Curriculum - II (i.e., hard-to-very-hard) stage')
parser.add_argument('--print_freq', type=int, default=10, help='print frequency')
parser.add_argument('--save_freq', type=int, default=10, help='save frequency')
parser.add_argument('--gpu', default='0', help='GPU id to use.')
parser.add_argument('--num_workers', type=int, default=2, help='num of workers to use.')
parser.add_argument('--seed', type=int, default=42, help='seed for initializing training.')
# model definition
parser.add_argument('--model', type=str, default='resnet18', help='choice of network architecture.')
parser.add_argument('--mode', type=str, default='fine-tuning', help='linear-classifier/fine-tuning/evaluation')
parser.add_argument('--modules', type=int, default=0, help='which modules to freeze for fine-tuning the pretrained model. (full-finetune(0), fine-tune only classifier(64), layer4(45), layer3(30), layer2(15), layer1(3) - Resnet18')
parser.add_argument('--num_classes', type=int, default=2, help='# of classes.')
parser.add_argument('--num_epoch', type=int, default=60, help='epochs to train for.')
parser.add_argument('--batch_size', type=int, default=32, help='batch_size.')
parser.add_argument('--lr', default=0.00001, type=float, help='learning rate. - 1e-5(Adam)')
parser.add_argument('--weight_decay', default=1e-4, type=float,
help='weight decay/weights regularizer for sgd. - 1e-4')
parser.add_argument('--beta1', default=0.9, type=float, help='momentum for sgd, beta1 for adam.')
parser.add_argument('--beta2', default=0.999, type=float, help=' beta2 for adam.')
parser.add_argument('--model_path', type=str,
default='./models/.pt',
help='path to load curriculum-I fine-tuned model')
parser.add_argument('--model_save_pth', type=str,
default='./Save_Results/',
help='path to save fine-tuned model')
parser.add_argument('--save_loss', type=str, default='./Save_Results/',
help='path to save loss and other performance metrics')
parser.add_argument('--resume', type=str, default='./Save_Results/',
metavar='PATH', help='path to latest checkpoint - model.pth (default: none)')
# Data paths
parser.add_argument('--image_pth', default='./MHIST/images/')
parser.add_argument('--annotation_pth', default='./MHIST/annotations.csv')
parser.add_argument('--validation_split', default=0.2, type=float, help='portion of the data that will be used for validation')
# Tiling parameters
parser.add_argument('--image_size', default=256, type=int, help='patch size width 256')
parser.add_argument('--alpha', default=0.1, type=int, help='portion of hard samples in each mini-batch to select top-K hard examples for curriculum-II fine-tuning')
args = parser.parse_args()
return args
#########
def main():
# parse the args
args = parse_args()
# Set the data loaders (train, val)
## MHIST dataset ####
if args.mode == 'fine-tuning':
# Train set
train_dataset = DatasetMHIST_train(args.image_pth, args.annotation_pth, args.image_size)
# train and validation split
num_train = len(train_dataset.datalist)
indices = list(range(num_train))
split = int(np.floor(args.validation_split * num_train))
np.random.shuffle(indices)
train_idx, val_idx = indices[split:], indices[:split]
train_sampler = SubsetRandomSampler(train_idx)
val_sampler = SubsetRandomSampler(val_idx)
print('total number of train samples in the dataset', len(train_idx))
print('total number of val samples in the dataset', len(val_idx))
# Data loaders
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, sampler=train_sampler,
shuffle=True if train_sampler is None else False,
num_workers=args.num_workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, sampler=val_sampler,
shuffle=False, num_workers=args.num_workers, pin_memory=True)
else:
raise NotImplementedError('invalid mode {}'.format(args.mode))
############################################
# set the model
if args.model == 'resnet18':
model = net.TripletNet_Finetune(args.model)
classifier = net.FinetuneResNet(args.num_classes)
if args.mode == 'fine-tuning':
# Load fine-tuned model
state = torch.load(args.model_path)
model.load_state_dict(state['model'])
classifier.load_state_dict(state['classifier'])
# # original model saved file with DataParallel (Multi-GPU)
# state_dict = torch.load(args.model_path)
#
# # create new OrderedDict that does not contain `module.`
# new_state_dict = OrderedDict()
#
# for k, v in state_dict['model'].items():
# name = k[7:] # remove `module.`
# new_state_dict[name] = v
#
# # Load pre-trained model
# print('==> loading pre-trained model')
# model.load_state_dict(new_state_dict)
# look at the contents of the model and its parameters
idx = 0
for layer_name, param in model.named_parameters():
print(layer_name, '-->', idx)
idx += 1
# Freezing the specific layer weights in the model and fine tune it
for name, param in enumerate(model.named_parameters()):
if name < args.modules: # No of layers(modules) to be freezed
print("module", name, "was frozen")
param = param[1]
param.requires_grad = False
else:
print("module", name, "was not frozen")
param = param[1]
param.requires_grad = True
# Multi-GPU
if torch.cuda.is_available() and torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
classifier = torch.nn.DataParallel(classifier)
else:
raise NotImplementedError('invalid training {}'.format(args.mode))
else:
raise NotImplementedError('model not supported {}'.format(args.model))
##########
# loss fn
criterion = nn.CrossEntropyLoss()
if torch.cuda.is_available():
model = model.cuda()
criterion = criterion.cuda()
classifier = classifier.cuda()
cudnn.benchmark = True
# Optimiser & scheduler
optimizer = optim.Adam(filter(lambda p: p.requires_grad, list(model.parameters()) + list(classifier.parameters())), lr=args.lr,
betas=(args.beta1, args.beta2), weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[30], gamma=0.95)
# Training Model
start_epoch = 1
best_val_acc = -1
'check resume from a checkpoint'
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['model'])
classifier.load_state_dict(checkpoint['classifier'])
optimizer.load_state_dict(checkpoint['optimizer'])
start_epoch = checkpoint['epoch'] + 1
best_val_acc = checkpoint['val_acc']
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
del checkpoint
torch.cuda.empty_cache()
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# Start log (writing into XL sheet)
with open(os.path.join(args.save_loss, 'fine_tuned_results.csv'), 'w') as f:
f.write('epoch, train_loss, train_acc, val_loss, val_acc\n')
# Routine
for epoch in range(start_epoch, args.num_epoch + 1):
if args.mode == 'fine-tuning':
print("==> fine-tuning the pretrained SSL model...")
time_start = time.time()
train_losses, train_acc = train(args, model, classifier, train_loader, optimizer, epoch)
print('Epoch time: {:.2f} s.'.format(time.time() - time_start))
print("==> validating the fine-tuned model...")
val_losses, val_acc = validate(args, model, classifier, val_loader, criterion, epoch)
# Log results
with open(os.path.join(args.save_loss, 'fine_tuned_results.csv'), 'a') as f:
f.write('%03d,%0.6f,%0.6f,%0.6f,%0.6f,\n' % ((epoch + 1), train_losses, train_acc, val_losses, val_acc))
'adjust learning rate --- Note that step should be called after validate()'
scheduler.step()
# Save model every 10 epochs
if epoch % args.save_freq == 0:
print('==> Saving...')
state = {
'args': args,
'model': model.state_dict(),
'classifier': classifier.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'train_loss': train_losses,
'train_acc': train_acc,
'val_acc': val_acc,
'val_loss': val_losses
}
torch.save(state, '{}/fine_tuned_model_{}.pt'.format(args.model_save_pth, epoch))
# Save model for the best val
if val_acc > best_val_acc:
print('==> Saving...')
state = {
'args': args,
'model': model.state_dict(),
'classifier': classifier.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'train_loss': train_losses,
'train_acc': train_acc,
'val_acc': val_acc,
'val_loss': val_losses
}
torch.save(state, '{}/best_fine_tuned_model_{}.pt'.format(args.model_save_pth, epoch))
best_val_acc = val_acc
# help release GPU memory
del state
torch.cuda.empty_cache()
else:
raise NotImplementedError('mode not supported {}'.format(args.mode))
if __name__ == "__main__":
args = parse_args()
print(vars(args))
# Force the pytorch to create context on the specific device
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
if args.seed:
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.gpu:
torch.cuda.manual_seed_all(args.seed)
# Main function
main()