\mainpage Main Page
ADC 13 Click is a compact add-on board that contains a high-performance data converter. This board features the ADS1262, a 32-bit, high precision, 38-kSPS, analog-to-digital converter with programmable gain amplifier and voltage reference from Texas Instruments.
- Author : Stefan Filipovic
- Date : Jun 2021.
- Type : SPI type
We provide a library for the ADC13 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for ADC13 Click driver.
adc13_cfg_setup
Config Object Initialization function.
void adc13_cfg_setup ( adc13_cfg_t *cfg );
adc13_init
Initialization function.
err_t adc13_init ( adc13_t *ctx, adc13_cfg_t *cfg );
adc13_default_cfg
Click Default Configuration function.
err_t adc13_default_cfg ( adc13_t *ctx );
adc13_measure_voltage
This function starts ADC conversation, reads RAW ADC data then calculates the voltage using the input vref for calculations.
err_t adc13_measure_voltage ( adc13_t *ctx, float vref, float *voltage );
adc13_measure_temperature
This function measures the internal temperature in Celsius.
err_t adc13_measure_temperature ( adc13_t *ctx, float *temperature );
adc13_set_input_channel
This function sets the ADC input positive and negative channels.
err_t adc13_set_input_channel ( adc13_t *ctx, uint8_t pos, uint8_t neg );
This example demonstrates the use of ADC 13 click board.
The demo application is composed of two sections :
Initializes the driver and performs the click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
adc13_cfg_t adc13_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
adc13_cfg_setup( &adc13_cfg );
ADC13_MAP_MIKROBUS( adc13_cfg, MIKROBUS_1 );
err_t init_flag = adc13_init( &adc13, &adc13_cfg );
if ( SPI_MASTER_ERROR == init_flag )
{
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
adc13_default_cfg ( &adc13 );
log_info( &logger, " Application Task " );
}
Reads the voltage between AIN0 and AIN1 channels, and the module internal temperature as well. All values are being displayed on the USB UART where you can track their changes.
void application_task ( void )
{
float voltage = 0;
float temperature = 0;
adc13_measure_voltage ( &adc13, ADC13_VREF_INTERNAL, &voltage );
log_printf( &logger, " Voltage: %.3f V\r\n", voltage );
adc13_measure_temperature ( &adc13, &temperature );
log_printf( &logger, " Temperature: %.2f C\r\n", temperature );
log_printf( &logger, " ---------------------------\r\n" );
Delay_ms( 500 );
}
An internal 2.5V reference is set by default. If you want, you can change it using the adc13_set_voltage_reference function.
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
- MikroSDK.Board
- MikroSDK.Log
- Click.ADC13
Additional notes and informations
Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.