-
Notifications
You must be signed in to change notification settings - Fork 111
/
compute_metrics.py
292 lines (258 loc) · 11.6 KB
/
compute_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import pyvene as pv
import torch.nn as nn
from torch.utils.data import DataLoader
from transformers import (
Trainer,
TrainingArguments,
DataCollator,
DataCollatorForSeq2Seq,
AutoTokenizer
)
from datasets import Dataset
from dataclasses import dataclass
from typing import Dict, Optional, Sequence
from task_config import task_config
from tqdm import tqdm
import os
import torch
import re
import evaluate
import numpy as np
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers.utils import logging
from transformers.trainer_utils import (
EvalPrediction,
has_length,
denumpify_detensorize
)
from pyreft import ReftDataCollator
device = "cuda" if torch.cuda.is_available() else "cpu"
logger = logging.get_logger(__name__)
def is_float(element: any) -> bool:
#If you expect None to be passed:
if element is None:
return False
try:
float(element)
return True
except ValueError:
return False
def extract_answer_number(sentence: str) -> float:
"""
To ensure a fair comparison, we follow:
https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/evaluate.py
"""
sentence = sentence.replace(',', '')
pred = [s for s in re.findall(r'-?\d+\.?\d*', sentence)]
if not pred:
return float('inf')
pred_answer = float(pred[-1])
if isinstance(pred_answer, str):
try:
pred_answer = float(pred_answer)
except ValueError as e:
pred_answer = float('inf')
return pred_answer
def extract_answer_letter(sentence: str) -> str:
"""
To ensure a fair comparison, we follow:
https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/evaluate.py
Note that it becomes ambiguous whether to extract the
first letter or the last letter. Either way may lead
to inaccurately assess the model performance.
We choose to follow the LLM-Adaptor repo, but leave this note
for future research to explore the impact of this.
"""
sentence_ = sentence.strip()
pred_answers = re.findall(r'A|B|C|D|E', sentence_)
if pred_answers:
if not pred_answers:
return ''
return pred_answers[0]
else:
return ''
def extract_output(pred, trigger=''):
if not trigger:
return pred
# for causallm only, use special trigger to detect new tokens.
# if cannot find trigger --> generation is too long; default to empty generation
start = pred.find(trigger)
if start < 0:
return ''
output = pred[start+len(trigger):].lstrip() # left strip any whitespaces
return output
def make_data_collator(tokenizer, model) -> ReftDataCollator:
data_collator_fn = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
model=model,
label_pad_token_id=-100,
padding="longest",
max_length=2048,
)
return ReftDataCollator(data_collator=data_collator_fn)
def make_dataloader(dataset: Dataset, batch_size: int, collate_fn: DataCollatorForSeq2Seq, shuffle: bool) -> DataLoader:
return DataLoader(dataset, shuffle=shuffle, batch_size=batch_size, collate_fn=collate_fn)
def compute_metrics(
task: str,
dataset_name: str,
intervenable: pv.IntervenableModel,
tokenizer: AutoTokenizer,
eval_dataset: Dataset,
data_items: list,
trigger_tokens: str,
run_name: str,
batch_size: int=4,
data_collator=None,
split=None,
greedy_decoding=False,
temperature=None,
top_p=None,
top_k=None
):
# switch the tokenizer mode first for generation tasks
if task != "glue":
tokenizer.padding_side = "left" # switch padding side for collator
num_beams = 4 if task in ["commonsense", "math"] and not greedy_decoding else 1
data_collator = data_collator if data_collator is not None else \
make_data_collator(tokenizer, intervenable.model)
eval_dataloader = make_dataloader(eval_dataset, batch_size, data_collator, shuffle=False)
correct_count = 0
total_count = 0
generations = []
eval_iterator = tqdm(eval_dataloader, position=0, leave=True)
all_preds = []
all_labels = []
if "Meta-Llama-3-8B-Instruct" in tokenizer.name_or_path: # pretty bad workaround for llama-3, forgive me
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
trigger_tokens = "assistant\n\n"
with torch.no_grad():
for step, inputs in enumerate(eval_iterator):
for k, v in inputs.items():
if v is not None and isinstance(v, torch.Tensor):
inputs[k] = v.to(device)
# [layers, batch_size, positions]
if inputs["intervention_locations"].dim() == 3:
intervention_locations = inputs["intervention_locations"].permute(1, 0, 2)
else:
intervention_locations = None
if task == "glue":
_, cf_outputs = intervenable(
{"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"]},
unit_locations={"sources->base": (None, intervention_locations.tolist())})
# lm loss on counterfactual labels
if dataset_name != "stsb":
preds = cf_outputs.logits.argmax(dim=-1)
else:
preds = cf_outputs.logits.squeeze(dim=1)
labels = inputs["labels"]
all_preds += preds.tolist()
all_labels += labels.tolist()
else:
# get left padding count, [batch_size], and add to locations
if intervention_locations is not None:
left_padding = (inputs["input_ids"] == tokenizer.bos_token_id).nonzero(as_tuple=True)[1]
if left_padding.numel() > 0:
left_padding = left_padding.reshape(1, -1, 1).to(device) # [1, batch_size, 1]
intervention_locations += left_padding
intervention_locations -= 1 # offset for the sink padding
else:
print("Warning: No BOS token found, skipping left padding adjustment.")
# repeat each batch by num_beams times in intervention locations
# -> [layers, batch_size * num_beams, positions]
intervention_locations = intervention_locations.repeat_interleave(num_beams, dim=1).tolist()
else:
intervention_locations = 0 # dummy for lora only baseline
# set generation args depending on task
generation_args = {
"base": {"input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"]},
"unit_locations": {"sources->base": (None, intervention_locations)},
"intervene_on_prompt": True,
"eos_token_id": tokenizer.eos_token_id,
"early_stopping": True,
}
if "generation_args" in task_config[task]:
generation_args.update(task_config[task]["generation_args"][greedy_decoding])
if "Meta-Llama-3-8B-Instruct" in tokenizer.name_or_path: # pretty bad workaround for llama-3, forgive me
generation_args["eos_token_id"] = terminators
# override generation args if necessary
if temperature is not None:
generation_args["temperature"] = temperature
if top_p is not None:
generation_args["top_p"] = top_p
if top_k is not None:
generation_args["top_k"] = top_k
# generate with intervention on prompt
_, steered_response = intervenable.generate(**generation_args)
# detokenize in batch
actual_preds = tokenizer.batch_decode(steered_response, skip_special_tokens=True)
for id, pred in zip(inputs["id"].tolist(), actual_preds):
example = data_items[id]
try:
raw_generation = extract_output(pred, trigger_tokens)
except:
print("get not split based on trigger tokens: ", raw_generation)
raw_generation = "WRONG"
# check if generation is correct
if task == "commonsense":
answer = example["answer"]
generation = raw_generation[:]
if generation.strip() == answer.strip():
correct_count += 1
elif task == "math":
answer = example["answer"]
answer = answer.strip()
if not is_float(answer): # assuming this is from AQuA:
generation = extract_answer_letter(raw_generation)
if generation.strip() == answer.strip():
correct_count += 1
else:
generation = extract_answer_number(raw_generation)
if abs(float(answer) - generation) <= 0.001:
correct_count += 1
elif task == "gsm8k":
answer = example["answer"].split("####")[-1].strip()
generation = extract_answer_number(raw_generation)
if abs(float(extract_answer_number(answer)) - generation) <= 0.001:
correct_count += 1
# log
total_count += 1
if task not in ["alpaca", "instruct", "ultrafeedback", "ultrafeedback_pair"]:
metric_str = round(correct_count / total_count, 3)
eval_iterator.set_postfix({"em": metric_str})
instruction = example["question"] if task == "gsm8k" else example["instruction"]
generations += [{
"instruction": instruction,
"raw_generation": raw_generation,
"generation": generation,
"answer": answer
}]
else:
generations += [{
"instruction": example["instruction"],
"output": raw_generation,
"dataset": dataset_name,
"generator": run_name
}]
# compute metrics
if task == "glue":
metric = evaluate.load("glue", dataset_name)
def compute_metrics_glue(preds, labels):
result = metric.compute(predictions=preds, references=labels)
if len(result) > 1:
result["combined_score"] = np.mean(list(result.values())).item()
return result
report = compute_metrics_glue(all_labels, all_preds)
print_str = "task metrics "
if split:
report = {split + "_" + k: v for k, v in report.items()}
print_str += "[" + split + "]"
print_str += ":"
print(report)
return [], report
if task in ["alpaca", "instruct", "ultrafeedback", "ultrafeedback_pair"]:
return generations, {}
else:
return generations, {f"eval/{dataset_name}": correct_count / total_count}