Skip to content

Latest commit

 

History

History
307 lines (184 loc) · 10.4 KB

README.md

File metadata and controls

307 lines (184 loc) · 10.4 KB
About stdlib...

We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.

The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.

When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.

To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!

dasum

NPM version Build Status Coverage Status

Compute the sum of absolute values (L1 norm).

The L1 norm is defined as

$$\|\mathbf{x}\|_1 = \sum_{i=0}^{n-1} \vert x_i \vert$$

Usage

import dasum from 'https://cdn.jsdelivr.net/gh/stdlib-js/blas-base-dasum@deno/mod.js';

dasum( N, x, stride )

Computes the sum of absolute values.

import Float64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@deno/mod.js';

var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );

var sum = dasum( x.length, x, 1 );
// returns 19.0

The function has the following parameters:

  • N: number of indexed elements.
  • x: input Float64Array.
  • stride: index increment.

The N and stride parameters determine which elements in x are used to compute the sum. For example, to sum every other value,

import Float64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@deno/mod.js';

var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );

var sum = dasum( 4, x, 2 );
// returns 10.0

Note that indexing is relative to the first index. To introduce an offset, use typed array views.

import Float64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@deno/mod.js';

// Initial array...
var x0 = new Float64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );

// Create an offset view...
var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element

// Sum every other value...
var sum = dasum( 3, x1, 2 );
// returns 12.0

If N is less than or equal to 0, the function returns 0.

dasum.ndarray( N, x, stride, offset )

Computes the sum of absolute values using alternative indexing semantics.

import Float64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@deno/mod.js';

var x = new Float64Array( [ -2.0, 1.0, 3.0, -5.0, 4.0, 0.0, -1.0, -3.0 ] );

var sum = dasum.ndarray( x.length, x, 1, 0 );
// returns 19.0

The function has the following additional parameters:

  • offset: starting index.

While typed array views mandate a view offset based on the underlying buffer, the offset parameter supports indexing semantics based on a starting index. For example, to sum the last three elements,

import Float64Array from 'https://cdn.jsdelivr.net/gh/stdlib-js/array-float64@deno/mod.js';

var x = new Float64Array( [ 1.0, -2.0, 3.0, -4.0, 5.0, -6.0 ] );

var sum = dasum.ndarray( 3, x, 1, x.length-3 );
// returns 15.0

// Using a negative stride to sum from the last element:
sum = dasum.ndarray( 3, x, -1, x.length-1 );
// returns 15.0

Notes

  • If N <= 0, the sum is 0.
  • dasum() corresponds to the BLAS level 1 function dasum.

Examples

import discreteUniform from 'https://cdn.jsdelivr.net/gh/stdlib-js/random-array-discrete-uniform@deno/mod.js';
import dasum from 'https://cdn.jsdelivr.net/gh/stdlib-js/blas-base-dasum@deno/mod.js';

var opts = {
    'dtype': 'float64'
};
var x = discreteUniform( 10, -100, 100, opts );
console.log( x );

var out = dasum( x.length, x, 1 );
console.log( out );

See Also


Notice

This package is part of stdlib, a standard library with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.

For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.

Community

Chat


License

See LICENSE.

Copyright

Copyright © 2016-2024. The Stdlib Authors.