About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Compute the inverse of a one-parameter Box-Cox transformation.
To compute the inverse of a one-parameter Box-Cox transformation, one finds the x
such that
npm install @stdlib/math-base-special-boxcoxinv
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var boxcoxinv = require( '@stdlib/math-base-special-boxcoxinv' );
Computes the inverse of a one-parameter Box-Cox transformation.
var v = boxcoxinv( 1.0, 2.5 );
// returns ~1.6505
v = boxcoxinv( 4.0, 2.5 );
// returns ~2.6095
v = boxcoxinv( 10.0, 2.5 );
// returns ~3.6812
v = boxcoxinv( 2.0, 0.0 );
// returns ~7.3891
v = boxcoxinv( -1.0, 2.5 );
// returns NaN
v = boxcoxinv( 0.0, -1.0 );
// returns 1.0
v = boxcoxinv( 1.0, NaN );
// returns NaN
v = boxcoxinv( NaN, 3.1 );
// returns NaN
var incrspace = require( '@stdlib/array-base-incrspace' );
var boxcoxinv = require( '@stdlib/math-base-special-boxcoxinv' );
var y = incrspace( -1.0, 10.0, 1.0 );
var l = incrspace( -0.5, 5.0, 0.5 );
var b;
var i;
var j;
for ( i = 0; i < y.length; i++ ) {
for ( j = 0; j < l.length; j++ ) {
b = boxcoxinv( y[ i ], l[ j ] );
console.log( 'boxcoxinv(%d, %d) = %d', y[ i ], l[ j ], b );
}
}
#include "stdlib/math/base/special/boxcoxinv.h"
Computes the inverse of a one-parameter Box-Cox transformation.
double out = stdlib_base_boxcoxinv( 1.0, 2.5 );
// returns ~1.6505
out = stdlib_base_boxcoxinv( 4.0, 2.5 );
// returns ~2.6095
The function accepts the following arguments:
- y:
[in] double
input value. - lambda:
[in] double
power parameter.
double stdlib_base_boxcoxinv ( const double y, const double lambda );
#include "stdlib/math/base/special/boxcoxinv.h"
#include <stdio.h>
int main( void ) {
const double x[] = { -1.0, 10.0, 1.0 };
const double y[] = { -0.5, 5.0, 0.5 };
double out;
int i;
int j;
for ( i = 0; i < 3; i++ ) {
for ( j = 0; j < 3; j++ ){
out = stdlib_base_boxcoxinv( x[ i ], y[ j ] );
printf ( "y: %lf, x: %lf, out: %lf\n", x[ i ], y[ j ], out );
}
}
}
- Box, G. E. P., and D. R. Cox. 1964. "An Analysis of Transformations." Journal of the Royal Statistical Society. Series B (Methodological) 26 (2). [Royal Statistical Society, Wiley]: 211–52. http://www.jstor.org/stable/2984418.
@stdlib/math-base/special/boxcox
: compute a one-parameter Box-Cox transformation.@stdlib/math-base/special/boxcox1p
: compute a one-parameter Box-Cox transformation of 1+x.@stdlib/math-base/special/boxcox1pinv
: compute the inverse of a one-parameter Box-Cox transformation for 1+x.
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2024. The Stdlib Authors.