Skip to content

Latest commit

 

History

History
494 lines (296 loc) · 14.2 KB

README.md

File metadata and controls

494 lines (296 loc) · 14.2 KB

dokukratie

A collection of scrapers to obtain documents from german parliaments and related public institutions

usage

installation

To run a full scrape with the current legislative term:

memorious run <scraper_name>

By default, documents (usually pdfs) and their metadata (json files) are stored in ./data/<scraper_name>

All scrapers can have these options (unless otherwise mentioned in the detailed descriptions for each scraper) via env vars to filter the scraping.

  • DOCUMENT_TYPES - major_interpellation or minor_interpellation (Große Anfrage / Kleine Anfrage)
  • LEGISLATIVE_TERMS - an integer, refer to the detailed scraper description for possible values
  • START_DATE - a date (isoformat) to scrape documents only published since this date
  • END_DATE - a date (isoformat) to scrape documents only published until this date

For example, to scrape all minor interpellations for Bayern from the last (not current) legislative term but only since 2018:

DOCUMENT_TYPES=minor_interpellation LEGISLATIVE_TERMS=17 START_DATE=2018-01-01 memorious run by

incremental scraping

By default, scrapers are only executing requests and downloading documents they have not seen before. To disable this behaviour, set MEMORIOUS_INCREMENTAL=false

scrapers

German state parliaments:

Other scrapers:

bb

Landtag Brandenburg

memorious run bb

The scraper uses the starweb implementation using this form: https://www.parlamentsdokumentation.brandenburg.de/starweb/LBB/ELVIS/servlet.starweb?path=LBB/ELVIS/LISSH.web&AdvancedSearch=yes

LEGISLATIVE_TERMS:

current: 7

earliest: 1

DOCUMENT_TYPES:

Unfortunately, Brandenburg gives no results with answers for types "Kleine Anfrage" or "Große Anfrage", so the type option is unusable.

be

Abgeordnetenhaus Berlin

memorious run be

The backend used to be starweb, but recently (2021-06-24) changed to something completly new, which could still be something starweb related, but according to urls it is called "portala". The scraper still requires some refining to work properly with date / document_type options, for now a START_DATE is always required to run.

The scraper sends some json that looks like an Elasticsearch query via post to this endpoint: https://pardok.parlament-berlin.de/portala/browse.tt.html from a query template

Although the new frontend looks fancy, that doesn't mean the service is performant. With too large queries (a long date range above a few months) it will shut down and return a 502 Error.

LEGISLATIVE_TERMS:

current: 18

earliest: 11

DOCUMENT_TYPES:

written_interpellation (Both "Große" and "Kleine" anfragen)

bw

Landtag von Baden-Württemberg

memorious run bw

For convenience, the scraper directly the xhr request result from this base site: https://www.landtag-bw.de/home/dokumente/drucksachen.html

Example:

https://www.landtag-bw.de/cms/render/live/de/sites/LTBW/home/dokumente/drucksachen/contentBoxes/drucksachen.xhr?limit=10&initiativeType=KA&offset=0

There is no explicit option for LEGISLATIVE_TERMS, but to filter for the actual terms of BW, you can use START_DATE and END_DATE ranges that match the terms.

DOCUMENT_TYPES:

  • minor_interpellation
  • major_interpellation

by

Bayerischer Landtag

memorious run by

The scraper uses this result page: https://www.bayern.landtag.de/parlament/dokumente/drucksachen/?dokumentenart=Drucksache&anzahl_treffer=10

LEGISLATIVE_TERMS:

current: 18

earliest: 1 (but useful metadata starts at 5 [1962-66])

DOCUMENT_TYPES:

  • minor_interpellation
  • major_interpellation

he

Hessischer Landtag

memorious run he

The scraper uses the starweb implementation using this form: http://starweb.hessen.de/starweb/LIS/servlet.starweb?path=LIS/PdPi.web

LEGISLATIVE_TERMS:

current: 20

earliest: 14 (or: 8?) // TODO

DOCUMENT_TYPES:

  • minor_interpellation
  • major_interpellation

hh

Hamburgische Bürgerschaft

memorious run hh

The scraper uses the parldok [5.4.1] implementation using this form: https://www.buergerschaft-hh.de/parldok/formalkriterien

DOCUMENT_TYPES:

  • minor_interpellation
  • major_interpellation

LEGISLATIVE_TERMS:

current: 22

earliest: 16

mv

Landtag Mecklenburg-Vorpommern

memorious run mv

The scraper uses the parldok [5.6.0] implementation using this form: https://www.dokumentation.landtag-mv.de/parldok/formalkriterien/

DOCUMENT_TYPES:

  • minor_interpellation
  • major_interpellation

LEGISLATIVE_TERMS:

current: 7

earliest: 1

ni

Landtag Niedersachsen

memorious run ni

The scraper uses the starweb implementation using this form: https://www.nilas.niedersachsen.de/starweb/NILAS/servlet.starweb?path=NILAS/lissh.web

LEGISLATIVE_TERMS:

current: 18

earliest: 10

rp

Landtag Rheinland-Pfalz

memorious run rp

The scraper uses the starweb implementation using this form: https://opal.rlp.de/starweb/OPAL_extern/servlet.starweb?path=OPAL_extern/PDOKU.web

LEGISLATIVE_TERMS:

current: 18

earliest: 11

DOCUMENT_TYPES:

  • minor_interpellation
  • major_interpellation

st

Landtag von Sachsen-Anhalt

memorious run st

The scraper uses the starweb implementation using this form: https://padoka.landtag.sachsen-anhalt.de/starweb/PADOKA/servlet.starweb?path=PADOKA/LISSH.web&AdvancedSuche

LEGISLATIVE_TERMS:

current: 7

earliest: 1

DOCUMENT_TYPES:

  • minor_interpellation
  • major_interpellation

th

Thüringer Landtag

memorious run th

The scraper uses the parldok [5.6.5] implementation using this form: http://parldok.thueringen.de/ParlDok/formalkriterien/

DOCUMENT_TYPES:

  • minor_interpellation
  • major_interpellation

LEGISLATIVE_TERMS:

current: 7

earliest: 1

dip

Dokumentations- und Informationssystem für Parlamentsmaterialien - API

memorious run dip

There is a really nice api. The scraper uses this base url (with the public api key): https://search.dip.bundestag.de/api/v1/drucksache?apikey=N64VhW8.yChkBUIJeosGojQ7CSR2xwLf3Qy7Apw464&f.zuordnung=BT

DOCUMENT_TYPES:

  • minor_interpellation
  • major_interpellation

parlamentsspiegel

Parlamentsspiegel (gemeinsames Informationssystem der Landesparlamente)

memorious run parlamentsspiegel

The "Parlamentsspiegel" is an official aggregator page for the document systems of the german state parliaments.

The scraper uses this index page with configurable get parameters: https://www.parlamentsspiegel.de/home/suchergebnisseparlamentsspiegel.html?view=kurz&sortierung=dat_desc&vorgangstyp=ANFRAGE&datumVon=15.05.2021

The "Parlamentsspiegel" doesn't distinguish between minor and major interpellations for the requests, so the DOCUMENT_TYPES option is not available.

sehrgutachten

Ausarbeitungen der Wissenschaftlichen Dienste des Deutschen Bundestages

memorious run sehrgutachten

Other than the name suggests, it's not technical based on https://sehrgutachten.de but scrapes the website of the bundestag directly.

This scraper scrapes documents from the Wissenschaftliche Dienste directly using and parsing this ajax call: https://www.bundestag.de/ajax/filterlist/de/dokumente/ausarbeitungen/474644-474644/?limit=10

There is no option DOCUMENT_TYPES and LEGISLATIVE_TERMS but START_DATE and END_DATE are available.

vsberichte

Verfassungsschutzberichte des Bundes und der Länder

memorious run vsberichte

Scraped from the api from https://vsberichte.de

This scraper doesn't need to run frequently as there is a new report once in a year.

There are no filter options available.

technical implementation

The scrapers are based upon memorious

Therefore, for each scraper there is a yaml file in ./dokukratie/ that defines how the scraper should run.

Some scrapers work with just a yaml definition, like Bayern: ./dokukratie/by.yml

Some others have their own custom python implementation, like Baden-Württemberg: ./dokukratie/scrapers/bw.py

Some others share the same software for their document database backend/frontend, mainly starweb or parldok

starweb

Used by:

Code: ./dokukratie/scrapers/starweb.py

parldok

Used by:

Code: ./dokukratie/scrapers/parldok.py

mmmeta

The scrapers generate a metadata database for mmmeta to consume.

This is useful for client applications to track state of files without downloading the actual files, e.g. to know which files are already consumed and to only download newer ones, etc...

How to use mmmeta for dokukratie:

1. install

Current used version: 0.4.0

pip install mmmeta

2. Sync metadata and config:

aws s3 sync s3://<bucket_name>/<scraper_name>/_mmmeta ./data/<scraper_name>

This will download the necessary metadata csv files (./db/) and config.yml

3. Generate or update local state:

Either use env var MMMETA=./data/<scraper_name> or jump into the base directory ./data/<scraper_name> where the subdirectory _mmmeta exists.

mmmeta update

or, within python applications:

from mmmeta import mmmeta

# init:
m = mmmeta()  # env var MMMETA
# OR
m = mmmeta("./data/<scraper_name>")

# update (or generate) local state
m.update()

If this runs into sqlalchemy migration problems, there is an attempt to fix it (perhaps make a backup of the local state.db before):

mmmeta update --cleanup

or, within python applications:

m.update(cleanup=True)

This will cleanup data in the state.db according to config.yml but will leave columns starting with an underscore untouched.

4. Access file metadata within python applications

soft delete files (not existing in the s3 bucket for some reason...) are marked with __deleted=1 and have a __deleted_reason property.

for file in m.files:
    # `file` has metadata as dictionary keys, e.g.:
    publisher = file["publisher"]
    # ...

    # s3 location:
    file.remote.uri

    # alter state data, e.g.:
    # as a convention, local state data should start with _
    # to not confuse it with the remote metadata
    file["_foo"] = bar
    file["_downloaded"] = True
    file.save()

installation

make install

additional dependencies for local development:

make install.dev

additional dependencies for production deployment (i.e. psycopg2):

make install.prod

testing

Install test utils:

make install.test

Then,

make test

This will run through all the scrapers (see details in ./tests/test_scrapers.py) with different combinations of input parameters and stop after the first document downloaded.

Or, to test only a specific scraper:

make test.<scraper_name>

Test all scrapers with the starweb implementation:

make test.starweb

Test all scrapers with the parldok implementation:

make test.parldok