-
Notifications
You must be signed in to change notification settings - Fork 41
/
object_detection_zed.py
289 lines (228 loc) · 10.6 KB
/
object_detection_zed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tensorflow as tf
import collections
import statistics
import math
import tarfile
import os.path
from threading import Lock, Thread
from time import sleep
import cv2
# ZED imports
import pyzed.sl as sl
sys.path.append('utils')
# ## Object detection imports
from object_detection.utils import ops as utils_ops
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
def load_image_into_numpy_array(image):
ar = image.get_data()
ar = ar[:, :, 0:3]
(im_height, im_width, channels) = image.get_data().shape
return np.array(ar).reshape((im_height, im_width, 3)).astype(np.uint8)
def load_depth_into_numpy_array(depth):
ar = depth.get_data()
ar = ar[:, :, 0:4]
(im_height, im_width, channels) = depth.get_data().shape
return np.array(ar).reshape((im_height, im_width, channels)).astype(np.float32)
lock = Lock()
width = 704
height = 416
confidence = 0.35
image_np_global = np.zeros([width, height, 3], dtype=np.uint8)
depth_np_global = np.zeros([width, height, 4], dtype=np.float)
exit_signal = False
new_data = False
# ZED image capture thread function
def capture_thread_func(svo_filepath=None):
global image_np_global, depth_np_global, exit_signal, new_data
zed = sl.Camera()
# Create a InitParameters object and set configuration parameters
input_type = sl.InputType()
if svo_filepath is not None:
input_type.set_from_svo_file(svo_filepath)
init_params = sl.InitParameters(input_t=input_type)
init_params.camera_resolution = sl.RESOLUTION.HD720
init_params.camera_fps = 30
init_params.depth_mode = sl.DEPTH_MODE.PERFORMANCE
init_params.coordinate_units = sl.UNIT.METER
init_params.svo_real_time_mode = False
# Open the camera
err = zed.open(init_params)
print(err)
while err != sl.ERROR_CODE.SUCCESS:
err = zed.open(init_params)
print(err)
sleep(1)
image_mat = sl.Mat()
depth_mat = sl.Mat()
runtime_parameters = sl.RuntimeParameters()
image_size = sl.Resolution(width, height)
while not exit_signal:
if zed.grab(runtime_parameters) == sl.ERROR_CODE.SUCCESS:
zed.retrieve_image(image_mat, sl.VIEW.LEFT, resolution=image_size)
zed.retrieve_measure(depth_mat, sl.MEASURE.XYZRGBA, resolution=image_size)
lock.acquire()
image_np_global = load_image_into_numpy_array(image_mat)
depth_np_global = load_depth_into_numpy_array(depth_mat)
new_data = True
lock.release()
sleep(0.01)
zed.close()
def display_objects_distances(image_np, depth_np, num_detections, boxes_, classes_, scores_, category_index):
box_to_display_str_map = collections.defaultdict(list)
box_to_color_map = collections.defaultdict(str)
research_distance_box = 30
for i in range(num_detections):
if scores_[i] > confidence:
box = tuple(boxes_[i].tolist())
if classes_[i] in category_index.keys():
class_name = category_index[classes_[i]]['name']
display_str = str(class_name)
if not display_str:
display_str = '{}%'.format(int(100 * scores_[i]))
else:
display_str = '{}: {}%'.format(display_str, int(100 * scores_[i]))
# Find object distance
ymin, xmin, ymax, xmax = box
x_center = int(xmin * width + (xmax - xmin) * width * 0.5)
y_center = int(ymin * height + (ymax - ymin) * height * 0.5)
x_vect = []
y_vect = []
z_vect = []
min_y_r = max(int(ymin * height), int(y_center - research_distance_box))
min_x_r = max(int(xmin * width), int(x_center - research_distance_box))
max_y_r = min(int(ymax * height), int(y_center + research_distance_box))
max_x_r = min(int(xmax * width), int(x_center + research_distance_box))
if min_y_r < 0: min_y_r = 0
if min_x_r < 0: min_x_r = 0
if max_y_r > height: max_y_r = height
if max_x_r > width: max_x_r = width
for j_ in range(min_y_r, max_y_r):
for i_ in range(min_x_r, max_x_r):
z = depth_np[j_, i_, 2]
if not np.isnan(z) and not np.isinf(z):
x_vect.append(depth_np[j_, i_, 0])
y_vect.append(depth_np[j_, i_, 1])
z_vect.append(z)
if len(x_vect) > 0:
x = statistics.median(x_vect)
y = statistics.median(y_vect)
z = statistics.median(z_vect)
distance = math.sqrt(x * x + y * y + z * z)
display_str = display_str + " " + str('% 6.2f' % distance) + " m "
box_to_display_str_map[box].append(display_str)
box_to_color_map[box] = vis_util.STANDARD_COLORS[classes_[i] % len(vis_util.STANDARD_COLORS)]
for box, color in box_to_color_map.items():
ymin, xmin, ymax, xmax = box
vis_util.draw_bounding_box_on_image_array(
image_np,
ymin,
xmin,
ymax,
xmax,
color=color,
thickness=4,
display_str_list=box_to_display_str_map[box],
use_normalized_coordinates=True)
return image_np
def main(args):
svo_filepath = None
if len(args) > 1:
svo_filepath = args[1]
# This main thread will run the object detection, the capture thread is loaded later
# What model to download and load
#MODEL_NAME = 'ssd_mobilenet_v1_coco_2018_01_28'
MODEL_NAME = 'ssd_mobilenet_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03'
#MODEL_NAME = 'ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03'
#MODEL_NAME = 'ssd_mobilenet_v1_coco_2018_01_28'
#MODEL_NAME = 'faster_rcnn_nas_coco_2018_01_28' # Accurate but heavy
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_FROZEN_GRAPH = 'data/' + MODEL_NAME + '/frozen_inference_graph.pb'
# Check if the model is already present
if not os.path.isfile(PATH_TO_FROZEN_GRAPH):
print("Downloading model " + MODEL_NAME + "...")
MODEL_FILE = MODEL_NAME + '.tar.gz'
MODEL_PATH = 'data/' + MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_PATH)
tar_file = tarfile.open(MODEL_PATH)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, 'data/')
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
# Start the capture thread with the ZED input
print("Starting the ZED")
capture_thread = Thread(target=capture_thread_func, kwargs={'svo_filepath': svo_filepath})
capture_thread.start()
# Shared resources
global image_np_global, depth_np_global, new_data, exit_signal
# Load a (frozen) Tensorflow model into memory.
print("Loading model " + MODEL_NAME)
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Limit to a maximum of 50% the GPU memory usage taken by TF https://www.tensorflow.org/guide/using_gpu
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.5
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Detection
with detection_graph.as_default():
with tf.Session(config=config, graph=detection_graph) as sess:
while not exit_signal:
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
if new_data:
lock.acquire()
image_np = np.copy(image_np_global)
depth_np = np.copy(depth_np_global)
new_data = False
lock.release()
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
num_detections_ = num_detections.astype(int)[0]
# Visualization of the results of a detection.
image_np = display_objects_distances(
image_np,
depth_np,
num_detections_,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index)
cv2.imshow('ZED object detection', cv2.resize(image_np, (width, height)))
if cv2.waitKey(10) & 0xFF == ord('q'):
cv2.destroyAllWindows()
exit_signal = True
else:
sleep(0.01)
sess.close()
exit_signal = True
capture_thread.join()
if __name__ == '__main__':
main(sys.argv)