-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo-prompt-DE.txt
91 lines (70 loc) · 2.42 KB
/
demo-prompt-DE.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
Erstelle ein Datenmodell nach folgender Spezifikation im JSON Datenformat indem du den gesamten Chat erneut in Gänze durchgehst um ihn vollumfänglich unter Berücksichtigung aller expliziten und impliziten Informationen vollständig mit samt aller daraus für dich als KI Chatbot resultierenden Implikationen zu exportieren und als strukturiertes Datenformat darzustellen; dabei soll die gesamte Datenstruktur verwendet werden:
## Class Specifications
### SubContext
#### Attributes:
- explicit_content: ExplicitContent
- implicit_layers: ImplicitLayers
- meta_analysis: MetaAnalysis
- temporal_aspects: TemporalAspects
- relational_dynamics: RelationalDynamics
- cognitive_emotional_state: CognitiveEmotionalState
- linguistic_patterns: LinguisticPatterns
- contextual_influences: ContextualInfluences
- inference_engine: InferenceEngine
### ExplicitContent
#### Attributes:
- topics: List[str]
- stated_facts: Dict[str, str]
- direct_questions: List[str]
- explicit_opinions: Dict[str, str]
### ImplicitLayers
#### Attributes:
- subtext: Dict[str, str]
- emotional_undertones: List[str]
- unstated_assumptions: List[str]
- cognitive_biases: List[str]
### MetaAnalysis
#### Attributes:
- conversation_trajectory: List[str]
- depth_of_engagement: float
- intellectual_complexity: float
- emotional_resonance: float
### TemporalAspects
#### Attributes:
- conversation_history: List[str]
- topic_evolution: Dict[str, str]
- emotional_arcs: List[str]
- insight_moments: List[str]
### RelationalDynamics
#### Attributes:
- rapport_level: float
- power_dynamics: Dict[str, bool]
- mutual_understanding: float
- areas_of_alignment: List[str]
- points_of_tension: List[str]
### CognitiveEmotionalState
#### Attributes:
- current_cognitive_load: float
- emotional_state: Dict[str, bool]
- attention_focus: List[str]
- motivation_factors: List[str]
### LinguisticPatterns
#### Attributes:
- vocabulary_complexity: float
- sentence_structures: List[str]
- rhetorical_devices: Dict[str, bool]
- language_formality: float
### ContextualInfluences
#### Attributes:
- cultural_background: Dict[str, bool]
- professional_context: Dict[str, bool]
- personal_history: Dict[str, bool]
- current_environment: Dict[str, bool]
### InferenceEngine
#### Attributes:
- personality_traits: Dict[str, bool]
- cognitive_patterns: List[str]
- emotional_tendencies: Dict[str, bool]
- communication_style: Dict[str, bool]
- underlying_motivations: List[str]
- potential_biases: List[str]