-
Notifications
You must be signed in to change notification settings - Fork 0
/
demo-prompt-EN.txt
91 lines (70 loc) · 2.37 KB
/
demo-prompt-EN.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
Create a data model according to the following specification in JSON data format by thoroughly reviewing the entire chat again to fully export it, taking into account all explicit and implicit information, including all resulting implications for you as an AI chatbot, and present it as a structured data format; the entire data structure should be utilized in this process:
## Class Specifications
### SubContext
#### Attributes:
- explicit_content: ExplicitContent
- implicit_layers: ImplicitLayers
- meta_analysis: MetaAnalysis
- temporal_aspects: TemporalAspects
- relational_dynamics: RelationalDynamics
- cognitive_emotional_state: CognitiveEmotionalState
- linguistic_patterns: LinguisticPatterns
- contextual_influences: ContextualInfluences
- inference_engine: InferenceEngine
### ExplicitContent
#### Attributes:
- topics: List[str]
- stated_facts: Dict[str, str]
- direct_questions: List[str]
- explicit_opinions: Dict[str, str]
### ImplicitLayers
#### Attributes:
- subtext: Dict[str, str]
- emotional_undertones: List[str]
- unstated_assumptions: List[str]
- cognitive_biases: List[str]
### MetaAnalysis
#### Attributes:
- conversation_trajectory: List[str]
- depth_of_engagement: float
- intellectual_complexity: float
- emotional_resonance: float
### TemporalAspects
#### Attributes:
- conversation_history: List[str]
- topic_evolution: Dict[str, str]
- emotional_arcs: List[str]
- insight_moments: List[str]
### RelationalDynamics
#### Attributes:
- rapport_level: float
- power_dynamics: Dict[str, bool]
- mutual_understanding: float
- areas_of_alignment: List[str]
- points_of_tension: List[str]
### CognitiveEmotionalState
#### Attributes:
- current_cognitive_load: float
- emotional_state: Dict[str, bool]
- attention_focus: List[str]
- motivation_factors: List[str]
### LinguisticPatterns
#### Attributes:
- vocabulary_complexity: float
- sentence_structures: List[str]
- rhetorical_devices: Dict[str, bool]
- language_formality: float
### ContextualInfluences
#### Attributes:
- cultural_background: Dict[str, bool]
- professional_context: Dict[str, bool]
- personal_history: Dict[str, bool]
- current_environment: Dict[str, bool]
### InferenceEngine
#### Attributes:
- personality_traits: Dict[str, bool]
- cognitive_patterns: List[str]
- emotional_tendencies: Dict[str, bool]
- communication_style: Dict[str, bool]
- underlying_motivations: List[str]
- potential_biases: List[str]