Python ML model transcoding Noir, including various algorithms such as Decision tree, K-Means, XGBoost, FNN, CNN
- data: ML model training and prediction data, including raw data and pre-processed data
- model: Three types of ML models
- noir: zkML generated Noir code
- tests: Testcase for zkML transpiler code
- zkml: The zkML code generation and floating point numbers quantize integer numbers
- decision_tree: Python2Noir generate Noir prediction code for the decision tree based on sk-learn library
- k_Means: Python2Noir generate Noir prediction code for the center points based on sk-learn library
- quantization: ML floating point numbers quantize integer numbers
- routine_code_generate: Routine generate Noir prediction code for the CNN and RNN based on Pytorch library
- XGBoost: Python2Noir generate Noir prediction code for the XGBoost classification and regression based on XGBoost library
- Python 3.7+
- Anaconda
- python2noir
- joblib
- scikit-learn
- xgboost
- numpy
- unittest
- pandas
- pytorch
- torchvision
git clone https://github.com/storswiftlabs/zkml-noir.git
cd zkml-noir
# execute decision tree generate code
python -m unittest tests/zkml/decision_tree/test_decision_tree_to_noir.py
# execute K-Means generate code
python -m unittest tests/zkml/k_Means/test_k_Means_to_noir.py
# execute XGBoost generate code
python -m unittest tests/zkml/XGBoost/test_xgboost_to_noir.py
# Train the CNN model
python tests/zkml/cnn/mnist_cnn.py
# execute FNN generate code
python zkml/routine_code_generate/fnn_to_noir.py
# execute CNN generate code
python zkml/routine_code_generate/cnn_to_noir.py
# Load the model and extract inputs
python zkml/routine_code_generate/extract_inputs.py