-
Notifications
You must be signed in to change notification settings - Fork 2
/
model_deploy_app.py
65 lines (50 loc) · 2.34 KB
/
model_deploy_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from __future__ import division, print_function
import sys
import os
import glob
import re
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from flask import Flask, redirect, url_for, request, jsonify
from gevent.pywsgi import WSGIServer
from werkzeug.utils import secure_filename
# Define a flask app
app = Flask(__name__)
MODEL_PATH = 'Models/trained_model_mobilenet.h5'
model = tf.keras.models.load_model(MODEL_PATH)
print('Model loaded. Check http://127.0.0.1:5000/')
def model_predict(img_path, model):
img = image.load_img(img_path, target_size=(224, 224))
# Preprocessing the image
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
categories = ['Apple Scab', 'Apple black rot', 'Cedar apple rust', 'Healthy Apple', 'Healthy Blueberry', 'Cherry healthy', 'Cherry Powdery Mildew', 'Cercospora Leaf Spot'
, 'Corn common rust', 'Healthy corn', 'Corn Northern leaf blight', 'Grape black rot', 'Grape Black measles', 'Healthy Grape', 'Grape leaf blight', 'Orange Huanglong bing'
, 'Peach bacterial spot', 'Healthy Peach', 'Bell Pepper bacterial spot', 'Bell pepper healthy', 'Potato Early blight', 'Potato healthy blight', 'Potato late blight'
, 'Healthy Raspberry', 'Healthy Soyabean', 'Squash powdery mildew', 'Healthy Strawberry', 'Strawberry leaf scotch', 'Tomato bacterial spot', 'Tomato early blight', 'Healthy Tomato'
, 'Tomato late blight', 'Tomato leaf mold', 'Tomato septoria leaf spot', 'Tomato two spotted spider mite', 'Tomato target spot', 'Tomato mosiac virus', 'Tomato yellow leaf curl virus']
preds = model.predict(x)
result = np.argmax(preds)
preds = categories[result]
return preds
@app.route('/', methods=['GET'])
def index():
# Main page
return None
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
result = model_predict(file_path, model)
return jsonify({'result' : result})
return None
if __name__ == '__main__':
app.run()