-
Notifications
You must be signed in to change notification settings - Fork 4
/
cartpole_dqn.py
184 lines (147 loc) · 6.39 KB
/
cartpole_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import gym
import random
import math
import numpy as np
from matplotlib import pyplot as plt
from collections import deque
from keras.layers import Dense
from keras.optimizers import Adam
from keras.models import Sequential
plt.style.use('ggplot')
np.random.seed(123)
EPISODES = 300
global_steps = 0
# 카트폴 예제에서의 DQN 에이전트
class DQNAgent:
def __init__(self, state_size, action_size):
self.render = False
self.load_model = False
# 상태와 행동의 크기 정의
self.state_size = state_size
self.action_size = action_size
# DQN 하이퍼파라미터
self.discount_factor = 0.99
self.learning_rate = 0.001
self.epsilon = 1.0
self.epsilon_decay = 0.999
self.epsilon_min = 0.01
self.batch_size = 64
self.train_start = 1000
# 리플레이 메모리, 최대 크기 2000
self.memory = deque(maxlen=2000)
# 모델과 타깃 모델 생성
self.model = self.build_model()
self.target_model = self.build_model()
# 타깃 모델 초기화
self.update_target_model()
if self.load_model:
self.model.load_weights("./save_model/cartpole_dqn_trained.h5")
# 상태가 입력, 큐함수가 출력인 인공신경망 생성
def build_model(self):
model = Sequential()
model.add(Dense(24, input_dim=self.state_size, activation='relu',
kernel_initializer='he_uniform'))
model.add(Dense(24, activation='relu',
kernel_initializer='he_uniform'))
model.add(Dense(self.action_size, activation='linear',
kernel_initializer='he_uniform'))
model.summary()
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
# 타깃 모델을 모델의 가중치로 업데이트
def update_target_model(self):
self.target_model.set_weights(self.model.get_weights())
# 입실론 탐욕 정책으로 행동 선택
def get_action(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
else:
q_value = self.model.predict(state)
return np.argmax(q_value[0])
# 샘플 <s, a, r, s'>을 리플레이 메모리에 저장
def append_sample(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
# 리플레이 메모리에서 무작위로 추출한 배치로 모델 학습
def train_model(self):
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
# 메모리에서 배치 크기만큼 무작위로 샘플 추출
mini_batch = random.sample(self.memory, self.batch_size)
states = np.zeros((self.batch_size, self.state_size))
next_states = np.zeros((self.batch_size, self.state_size))
actions, rewards, dones = [], [], []
for i in range(self.batch_size):
states[i] = mini_batch[i][0]
actions.append(mini_batch[i][1])
rewards.append(mini_batch[i][2])
next_states[i] = mini_batch[i][3]
dones.append(mini_batch[i][4])
# 현재 상태에 대한 모델의 큐함수
# 다음 상태에 대한 타깃 모델의 큐함수
target = self.model.predict(states)
target_val = self.target_model.predict(next_states)
# 벨만 최적 방정식을 이용한 업데이트 타깃
for i in range(self.batch_size):
if dones[i]:
target[i][actions[i]] = rewards[i]
else:
target[i][actions[i]] = rewards[i] + self.discount_factor * (np.amax(target_val[i]))
self.model.fit(states, target, batch_size=self.batch_size,
epochs=1, verbose=0)
if __name__ == "__main__":
graph_path = os.path.join(os.getcwd(), 'save_graph')
model_path = os.path.join(os.getcwd(), 'save_model')
if not os.path.isdir(graph_path):
os.mkdir(graph_path)
if not os.path.isdir(model_path):
os.mkdir(model_path)
# CartPole-v1 환경, 최대 타임스텝 수가 500
env = gym.make('CartPole-v1')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# DQN 에이전트 생성
agent = DQNAgent(state_size, action_size)
scores, episodes = [], []
for e in range(EPISODES):
done = False
score = 0
# env 초기화
state = env.reset()
state = np.reshape(state, [1, state_size])
while True:
if agent.render:
env.render()
# 현재 상태로 행동을 선택
action = agent.get_action(state)
# 선택한 행동으로 환경에서 한 타임스텝 진행
next_state, reward, done, info = env.step(action)
next_state = np.reshape(next_state, [1, state_size])
# 에피소드가 중간에 끝나면 -100 보상
reward = reward if not done or score == 499 else -100
# 리플레이 메모리에 샘플 <s, a, r, s'> 저장
agent.append_sample(state, action, reward, next_state, done)
# 매 타임스텝마다 학습
if len(agent.memory) >= agent.train_start:
agent.train_model()
score += reward
state = next_state
global_steps += 1
if done:
# 각 에피소드마다 타깃 모델을 모델의 가중치로 업데이트
agent.update_target_model()
score = score if score == 500 else score + 100
# 에피소드마다 학습 결과 출력
scores.append(score)
episodes.append(e)
plt.plot(episodes, scores)
plt.savefig("./save_graph/cartpole_dqn.png")
print("episode:", e, " score:", score, " memory length:", len(agent.memory),
" epsilon:", agent.epsilon, "global steps: ", global_steps)
# 이전 10개 에피소드의 점수 평균이 490보다 크면 학습 중단
if np.mean(scores[-min(10, len(scores)):]) > 490:
agent.model.save_weights("./save_model/cartpole_dqn.h5")
agent.render = True
else:
agent.render = False
break