-
Notifications
You must be signed in to change notification settings - Fork 0
/
config.py
126 lines (92 loc) · 2.46 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import tensorflow as tf
def operators_list():
return ['add', 'subtract', 'multiply', 'divide', 'modulo']
def operand_digits_list():
return [4, 6, 8]
def np_type():
return np.int
def dir_data():
return 'data'
def dir_saved_models():
return 'saved_models'
#return dir_logs()
def dir_plot_fig():
return 'plot_figures'
def dir_logs():
return 'tb_logs'
def dir_run_info_experiments():
return 'run_info'
def dir_measure_log():
return 'measure_logs'
def dir_h1_logs():
return 'h1_logs'
def dir_sigmoid_output_seq():
return 'sigmoid_output_seq'
def dir_result_statistics():
return 'result_statistics'
def period_h1_log():
# return epoch period
return 100
def carry_dataset_statistics_name():
return 'carry_dataset_statistics.csv'
def batch_size():
return 32
def big_batch_size():
return batch_size() * (2**4) # 32 * (2**4) == 512
def n_epoch():
return 999999999999
def learning_rate():
return 0.001
def all_correct_stop():
return True
def big_batch_saturation():
return False
def activation():
return tf.nn.relu # tf.nn.sigmoid, tf.nn.tanh, tf.nn.relu
def decreasing_dev_summary_period():
return False
def l1_coef():
return 0.000
def l2_coef():
return 0.000
def dataset_ratio():
(train_ratio, dev_ratio, test_ratio) = (1.0, 0, 0)
#(train_ratio, dev_ratio, test_ratio) = (0.8*0.8, 0.8*0.2, 0.2)
return train_ratio, dev_ratio, test_ratio
def on_tlu():
return False
def on_carry_datasets_summary(dataset_type):
if dataset_type == 'train':
return False
if dataset_type == 'dev':
return False
if dataset_type == 'test':
return False
def on_single_loss():
return False
#def max_time():
# return 30
#def rnn_type():
# return 'elman'
#return 'jordan'
'''operators_list = ['add', 'subtract', 'multiply', 'divide', 'modulo']
operand_digits_list = [4, 6, 8]
np_type = np.int
dir_data = 'data'
dir_saved_models = 'saved_models'
dir_plot_fig = 'plot_figures'
dir_logs = 'tb_logs'
dir_run_info_experiments = 'run_info'
dir_measure_log = 'measure_logs'
carry_dataset_statistics_name = 'carry_dataset_statistics.csv'
# Hyperparameters - training
batch_size = 32
big_batch_size = batch_size * (2**4) # 32 * (2**4) == 512
n_epoch = 999999999999
learning_rate = 0.001
all_correct_stop = True
big_batch_saturation = False
activation = tf.nn.sigmoid # tf.nn.sigmoid, tf.nn.tanh, tf.nn.relu
decreasing_dev_summary_period = False
'''