-
Notifications
You must be signed in to change notification settings - Fork 10
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Testset of Outdoor-Rain #8
Comments
Hi @dsjiaod , Thank you for your interest and attention. I have checked the test set of Outdoor-Rain, i.e., Test1, again. The original one from [1] has expired according to [2] [1] Heavy Rain Image Restoration: Integrating Physics Model and Conditional Adversarial Learning |
@sunshangquan 谢谢您的回复,我并没有运行histoformer的模型,而是从您Google Drive中提供的visual results下载了结果进行evaluation。在raindrop数据集我能得到与论文中一致的指标,但是在outdoor-rain数据集上,我用您提供的这个测试集里的GT进行测试,依然得到的是我上面提到的结果(31.673093507886737 0.929211313578245),我是用您提供的compute_psnr.py进行的计算,请问是我哪个步骤有误么? |
@dsjiaod ,那应该是我传错文件夹版本了,下午更新一下,您方便的话可以先尝试用test_histoformer.py跑出结果,我刚刚又跑了一遍,psnr是接近32.09的结果 |
@sunshangquan 好的,您有更新结果麻烦提醒下我,我也试着跑一下net_g_best的inference |
@sunshangquan 我刚刚测试了一下net_g_best,没有问题了,谢谢您的帮助 |
很棒的工作!
方便的话请问能提供一下Outdoor-Rain的测试集吗?我在我之前下载的测试集上,下载了您提供的visual results,用您提供的evaluation psnr和ssim的code测试Histoformer的性能,结果是31.673093507886737 0.929211313578245,与paper中的结果有较大差异,可能是我的测试集和您用的不一致。希望您能提供使用的测试集,方便我在paper中进行公平对比,感谢!
The text was updated successfully, but these errors were encountered: